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Context-free grammars
recap

• Context free (CF) grammars are most practically useful grammars in the
Chomsky hierarchy

• Most of the parsing theory (and practice) is build on parsing CF languages
• The context-free rules have the form

A → α

where A is a single non-terminal symbol and α is a (possibly empty)
sequence of terminal or non-terminal symbols
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An example context-free grammar
S → NP VP
S → Aux NP VP
NP → Det N
NP → Prn
NP → NP PP
VP → V NP
VP → V
VP → VP PP
PP → Prp NP
N → duck
N → park
N → parks
V → duck
V → ducks
V → saw
Prn → she | her
Prp → in | with
Det → a | the

Derivation of sentence ‘she saw a duck’
S ⇒ NP VP
NP ⇒ Prn
Prn ⇒ she
VP ⇒ V NP
V ⇒ saw
NP ⇒ Det N
Det ⇒ a
N ⇒ duck
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Representations of a context-free parse tree
A parse tree:
S

NP

Prn

I

VP

V

saw

NP

Prnp

her

N

duck

A history of derivations:
• S ⇒ NP VP
• NP ⇒ Prn
• Prn ⇒ I
• VP ⇒ V NP
• V ⇒ saw
• NP ⇒ Prnp N
• Prnp ⇒ her
• N ⇒ duck

A sequence with (labeled) brackets[
S

[
NP

[Prn I]
][

VP
[V saw]

[
NP

[
Prnp

her
]
[N duck]

]]]
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Parsing with context-free grammars

• Parsing can be
– top down: start from S, search for derivation that leads to the input
– bottom up: start from input, try to reduce it to S

• Naive search for both recognition/parse is intractable
• Dynamic programming methods allow polynomial time recognition
CKY bottom-up, requires Chomsky normal form

Earely top-down (with bottom-up filtering), works with unrestricted grammars
– O(n3) time complexity (for recognition)

• Chart parsers are (reasonably) efficient, and they can represent ambiguity in
their output

• However, they do not help with resolving ambiguity
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Natural languages are ambiguous
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Some types of ambiguities

• Lexical ambiguity
– She is looking for a match
– We saw her duck

• Attachment ambiguity
– I saw the man with a telescope
– Panda eats bamboo shoots and leaves

• Local ambiguity (garden path sentences)
– The horse raced past the barn fell
– The old man the boats
– Fat people eat accumulates
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Ambiguity and the parsers

• Given a grammar, chart parsers (e.g., CKY, Early) can parse natural language
sentences relatively efficiently

• These parsers also represent all possible parse trees in their chart/output
efficiently

• However, they have nothing to say about which of these parses are the most
likely one.

• The task of selecting the best parse among many is called disambiguation
• In almost all practical uses, parsers are combined with disambiguators
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We do not recognize many ambiguities

• Time flies like an arrow
• Outside of a dog, a book is a man’s best friend
• One morning I shot an elephant in my pajamas
• Don’t eat the pizza with a knife and fork

A parser, nevertheless, produces multiple parses for these sentences.
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We do not recognize many ambiguities

• Time flies like an arrow; fruit flies like a banana
• Outside of a dog, a book is a man’s best friend
• One morning I shot an elephant in my pajamas
• Don’t eat the pizza with a knife and fork

A parser, nevertheless, produces multiple parses for these sentences.
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We do not recognize many ambiguities

• Time flies like an arrow; fruit flies like a banana
• Outside of a dog, a book is a man’s best friend; inside it’s too hard to read
• One morning I shot an elephant in my pajamas
• Don’t eat the pizza with a knife and fork

A parser, nevertheless, produces multiple parses for these sentences.
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We do not recognize many ambiguities

• Time flies like an arrow; fruit flies like a banana
• Outside of a dog, a book is a man’s best friend; inside it’s too hard to read
• One morning I shot an elephant in my pajamas. How he got in my pajamas, I

don’t know.
• Don’t eat the pizza with a knife and fork

A parser, nevertheless, produces multiple parses for these sentences.
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We do not recognize many ambiguities

• Time flies like an arrow; fruit flies like a banana
• Outside of a dog, a book is a man’s best friend; inside it’s too hard to read
• One morning I shot an elephant in my pajamas. How he got in my pajamas, I

don’t know.
• Don’t eat the pizza with a knife and fork; the one with mushrooms is better.

A parser, nevertheless, produces multiple parses for these sentences.
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The task: choosing the most plausible parse
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The task: choosing the most plausible parse
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Statistical parsing

• Find the most plausible parse of an input string given all possible parses
• We need a scoring function, for each parse, given the input
• We typically use probabilities for scoring, task becomes finding the parse (or

tree), t, given the input string w

tbest = argmax
t

P(t |w)

• Note that some ambiguities need a larger context than the sentence to be
resolved correctly
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Probability refresher (1)

• Probability is a measure of (un)certainty of an event
• We quantify the probability of an event with a number between 0 and 1

0 the event is impossible
0.5 the event is as likely to happen (or happened) as it is not
1 the event is certain

• All possible outcomes of a trial (experiment or observation) is called the
sample space (Ω)

Axioms of probability states that
1. P(E) ∈ R, P(E) ⩾ 0

2. P(Ω) = 1

3. For disjoint events E1 and E2, P(E1 ∪ E2) = P(E1) + P(E2)
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Probability refresher (2)
Joint and conditional probabilities, chain rule

• Joint probability of two events is noted as P(x,y)
• The conditional probability is defined as

P(x|y) =
P(x,y)
P(y) or P(x,y) = P(x|y)P(y)

• If the events x and y are independent,
P(x|y) = P(x), P(y|x) = p(y), P(x,y) = P(x)P(y)

• For more than two variables (chain rule):

P(x,y, z) = P(z|x,y)P(y|x)P(x) = P(x|y, z)P(y|z)P(z) = . . .

• If all are independent
P(x,y, z) = P(x)P(y)P(z)
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Probabilistic context free grammars (PCFG)

• A probabilistic context free grammar augments a CFG by adding a probability
value to each rule

A → α [p]

where A is a non-terminal, α is string of terminals and non-terminals, and p is
the probability associated with the rule

• Like CFGs, a PCFG accepts a sentence if it can be derived from S with rules
R1 . . .Rk

• The probability of a parse tree t of input stringw, P(t |w), corresponding to the
derivation R1 . . .Rk is

P(t |w) =
∏k

1 p(Ri)

where p(Ri) is the probability of the rule Ri

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 13 / 29



CFG recap Ambiguity Statistical parsing PCFGs Evaluation

PCFG example (1)
S

NP

We

VP

V

saw

NP

NP

D

the

N

man

PP
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with

NP

D

a

N

hat

S → NP VP 1.0
NP → D N 0.7
NP → NP PP 0.2
NP → We 0.1
VP → V NP 0.9
VP → VP PP 0.1
PP → P NP 1.0
N → hat 0.2
N → man 0.8
V → saw 1.0
P → with 1.0
D → a 0.6
D → the 0.4

P(t) = 1.0× 0.1× 0.9× 1.0× 0.2× 0.7× 0.4× 0.8× 1.0× 1.0× 0.7× 0.6× 0.2

= 0.000263424
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PCFG example (1)
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S → NP VP 1.0
NP → D N 0.7
NP → NP PP 0.2
NP → We 0.1
VP → V NP 0.9
VP → VP PP 0.1
PP → P NP 1.0
N → hat 0.2
N → man 0.8
V → saw 1.0
P → with 1.0
D → a 0.6
D → the 0.4

P(t) = 1.0× 0.1× 0.9× 1.0× 0.2× 0.7× 0.4× 0.8× 1.0× 1.0× 0.7× 0.6× 0.2

= 0.000263424
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PCFG example (2)
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S → NP VP 1.0
NP → D N 0.7
NP → NP PP 0.2
NP → We 0.1
VP → V NP 0.9
VP → VP PP 0.1
PP → P NP 1.0
N → hat 0.2
N → man 0.8
V → saw 1.0
P → with 1.0
D → a 0.6
D → the 0.4

P(t) = 1.0× 0.1× 0.1× 0.9× 1.0× 0.7× 0.4× 0.8× 1.0× 1.0× 0.7× 0.6× 0.2

= 0.0001693440
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PCFG example (2)
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PP → P NP 1.0
N → hat 0.2
N → man 0.8
V → saw 1.0
P → with 1.0
D → a 0.6
D → the 0.4

P(t) = 1.0× 0.1× 0.1× 0.9× 1.0× 0.7× 0.4× 0.8× 1.0× 1.0× 0.7× 0.6× 0.2
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Where do the rule probabilities come from?

• Supervised: estimate from a treebank, e.g., using maximum likelihood
estimation

• Unsupervised: expectation-maximization (EM)
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PCFGs - an interim summary

• PCFGs assign probabilities to parses based on CFG rules used during the
parse

• PCFGs assume that the rules are independent
• PCFGs are generative models, they assign probabilities to P(t,w), we can

calcuate the probability of a sentence by

P(w) =
∑
t

P(t,w) =
∑
t

P(t)
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PCFG chart parsing

• Both CKY and Earley algorithms can be adapted to PCFG parsing
• CKY matches PCFG parsing quite well

– to get the best parse, store the constituent with the highest probability in every
cell of the chart

– to get n-best best parse (beam search), store the n-best constituents in every cell
in the chart
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CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP
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CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

P(Prn01) = P(Prn → I) P(NP01) = P(NP → I)
P(V12) = P(V → saw) P(VP12) = P(VP → saw)

. . .
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 19 / 29
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CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

?

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

P(S02 ⇒ NP01VP12) = P(NP01)P(VP12)P(S → NP VP)
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CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S ?

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

P(VP13 ⇒ V12NP23) = P(V12)P(NP23)P(VP → V NP)
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CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP ?

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

P(NP24 ⇒ Prn23N34) = P(Prn23)P(N34)P(NP → Prn N)
>

P(S24 ⇒ NP23VP34) = P(NP23)P(VP34)P(S → NP VP)
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CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

?

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP
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CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

P(S03 ⇒ NP01VP23) = P(NP01)P(VP13)P(S → NP VP)
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CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP
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CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S ?

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP
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CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S VP

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

P(VP14 ⇒ V12NP24) = P(V12)P(NP24)P(VP → V NP)
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CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S VP

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP
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CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S VP

?

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP
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CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S VP

S

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

P(S14 ⇒ NP01VP14) = P(NP01)P(VP14)P(S → NP VP)
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CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S VP

S

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP
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CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S VP

S

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP
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What makes the difference in PCFG probabilities?
S ⇒ NP VP 1.0
NP ⇒ We 0.1
VP ⇒ VP PP 0.1
VP ⇒ V NP 0.8
V ⇒ saw 1.0
NP ⇒ D N 0.7
D ⇒ the 0.4
N ⇒ man 0.8
PP ⇒ P NP 1.0
P ⇒ with 1.0
NP ⇒ D N 0.7
D ⇒ a 0.6
N ⇒ hat 0.2

S ⇒ NP VP 1.0
NP ⇒ We 0.1
VP ⇒ V NP 0.7
V ⇒ saw 1.0
NP ⇒ NP PP 0.2
NP ⇒ D N 0.7
D ⇒ the 0.4
N ⇒ man 0.8
PP ⇒ P NP 1.0
P ⇒ with 1.0
NP ⇒ D N 0.7
D ⇒ a 0.6
N ⇒ hat 0.2

The parser’s choice would not be affected by lexical items!
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What is wrong with PCFGs?

• In general: the assumption of independence
• The parents affect the correct choice for children, for example, in English

NP → Prn is more likely in the subject position
• The lexical units affect the correct decision, for example:

– We eat the pizza with hands
– We eat the pizza with mushrooms

• Additionally: PCFGs use local context, difficult to incorporate
arbitrary/global features for disambiguation
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Solutions to PCFG problems

• Independence assumptions can be relaxed by either
– Parent annotation
– Lexicalization
– Reranking

• To condition on arbitrary/global information: discriminative models
• Most practical PCFG parsers are lexicalized, and often use a re-ranker

conditioning on other (global) features
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Lexicalizing PCFGs

• Replace non-terminal X with X(h), where h is a tuple with the lexical word
and its POS tag

• Now the grammar can capture (head-driven) lexical dependencies
• But number of nonterminals grow by |V |× |T |

• Estimation becomes difficult (many rules, data sparsity)
• Some treebanks (e.g., Penn Treebank) do not annotate heads, they are

automatically annotated (based on heuristics)
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Example lexicalized derivation
S (saw)

NP(we)

Prn(we)

We

VP(saw)

V(saw)

saw

NP(man)

NP(man)

D(the)

the

N(man)

man

PP(hat)

P(with)

with

NP(hat)

D(a)

a

N(hat)

hat

Example rules:

S(saw) → NP(we) VP(saw)
VP(saw) → V(saw) NP(man)
VP(saw) → VP(saw) PP(hat)
VP(saw) → VP(saw) PP(telescope)
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Example lexicalized derivation

S(saw)

NP(we)

Prn(we)

We

VP(saw)

VP(saw)

V(saw)

saw

NP(man)

D(the)

the

N(man)

man

PP(hat)

P(with)

with

NP(hat)

D(a)

a

N(hat)

hat

Example rules:

S(saw) → NP(we) VP(saw)
VP(saw) → V(saw) NP(man)
VP(saw) → VP(saw) PP(hat)
VP(saw) → VP(saw) PP(telescope)
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Evaluating the parser output

• A parser can be evaluated
extrinsically based on its effect on a task (e.g., machine translation) where it

is used
intrinsically based on the match with ideal parsing

• The typically evaluation (intrinsic) is based on a gold standard (GS)
• Exact match is often

– very difficult to achieve (think about a 50-word newspaper sentence)
– not strictly necessary (recovering parts of the parse can be useful for many

purposes)
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Parser evaluation metrics

• Common evaluation metrics are (PARSEVAL):
precision the ratio of correctly predicted nodes

recall the nodes (in GS) that are predicted correctly
f-measure harmonic mean of precision and recall

(
2×precision×recall
precision+recall

)
• The measures can be

unlabled the spans of the nodes are expected to match
labeled the node label should also match

• Crossing brackets (or average non-crossing brackets)
( We ( saw ( them ( with binoculars ))))
( We (( saw them ) ( with binoculars )))

• Measures can be averaged per constituent (micro average), or over sentences
(macro average)
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PARSEVAL example
Gold standard:

S

NP

N

We

VP

V

saw

NP

NP

D

the

N

man

PP

P

with

NP

D

a

N

hat

Parser output:
S

NP

N

We

VP

VP

V

saw

NP

D

the

N

man

PP

P

with

NP

D

a

N

hat

precision =
6

7
recall = 6

7
f-measure =

6

7
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Problems with PARSEVAL metrics

• PARSEVAL metrics favor certain type of structures
– Results are surprisingly well for flat tree structures (e.g., Penn treebank)
– Results of some mistakes are catastrophic (e.g., low attachment)

• Not all mistakes are equally important for semantic distinctions
• Some alternatives:

– Extrinsic evaluation
– Evaluation based on extracted dependencies
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Summary

• PCFG is a simple attempt to augment CFG with probabilities
• PCFG parsing alone is suboptimal: independence assumptions are too strong
• Solutions include (a combination of ) lexicalization, parent annotation and

re-ranking
• Reading suggestion: jurafsky2009

Next:
• Dependency grammars and dependency parsing
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