Probabilistic context-free parsing Parsing ISCL-BA-06

Çağrı Çöltekin ccoltekin@sfs.uni-tuebingen.de

University of Tübingen Seminar für Sprachwissenschaft

Winter Semester 2020/21

version: 0bcd8cd+@2021-01-21

Context-free grammars

recap

- Context free (CF) grammars are most practically useful grammars in the Chomsky hierarchy
- Most of the parsing theory (and practice) is build on parsing CF languages
- The context-free rules have the form

 $A \to \alpha$

where A is a single non-terminal symbol and α is a (possibly empty) sequence of terminal or non-terminal symbols

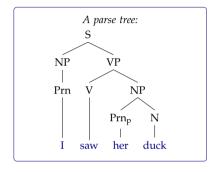
An example context-free grammar

$S \rightarrow NP VP$	Derivation of sentence 'she s	saw a duck'
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Derivation of sentence 'she s $S \Rightarrow NP VP$ $NP \Rightarrow Prn$ $Prn \Rightarrow she$ $VP \Rightarrow V NP$ $V \Rightarrow saw$ $NP \Rightarrow Det N$ $Det \Rightarrow a$ $N \Rightarrow duck$	saw a duck'
$\Prn \rightarrow she \mid her$ $\Prp \rightarrow in \mid with$ $Det \rightarrow a \mid the$		

Ç. Çöltekin, SfS / University of Tübingen

CFG recap Ambiguity Statistical parsing PCFGs Evaluation

Representations of a context-free parse tree



A history of derivations:

• S
$$\Rightarrow$$
 NP VP

• NP
$$\Rightarrow$$
 Prr

• Prn
$$\Rightarrow$$
 I

• VP
$$\Rightarrow$$
 V NP

• V
$$\Rightarrow$$
 saw

• NP
$$\Rightarrow$$
 Prn_p N

•
$$Prn_p \Rightarrow her$$

• N
$$\Rightarrow$$
 duck

A sequence with (labeled) brackets
$$\left[\left[{{_{NP}}\left[{_{Prn}}\ I \right]} \right] \left[{_{VP}}\left[{_{V}}\ saw \right] \left[{_{NP}}\left[{_{Prn_p}}\ her \right] \left[{_{N}}\ duck \right]} \right] \right] \right]$$

Parsing with context-free grammars

- Parsing can be
 - top down: start from S, search for derivation that leads to the input
 - bottom up: start from input, try to reduce it to S
- Naive search for both recognition/parse is intractable
- Dynamic programming methods allow polynomial time *recognition*
 - CKY bottom-up, requires Chomsky normal form
- Earely top-down (with bottom-up filtering), works with unrestricted grammars
 - $O(n^3)$ time complexity (for recognition)
- Chart parsers are (reasonably) efficient, and they can represent ambiguity in their output
- However, they do not help with resolving ambiguity

Natural languages are ambiguous

Some types of ambiguities

- Lexical ambiguity
 - She is looking for a match
 - We saw her duck
- Attachment ambiguity
 - I saw the man with a telescope
 - Panda eats bamboo shoots and leaves
- Local ambiguity (garden path sentences)
 - The horse raced past the barn fell
 - The old man the boats
 - Fat people eat accumulates

Ambiguity and the parsers

- Given a grammar, chart parsers (e.g., CKY, Early) can parse natural language sentences relatively efficiently
- These parsers also represent all possible parse trees in their chart/output efficiently
- However, they have nothing to say about which of these parses are the most likely one.
- The task of selecting the best parse among many is called disambiguation
- In almost all practical uses, parsers are combined with disambiguators

- Time flies like an arrow
- Outside of a dog, a book is a man's best friend
- One morning I shot an elephant in my pajamas
- Don't eat the pizza with a knife and fork

A parser, nevertheless, produces multiple parses for these sentences.

- Time flies like an arrow; fruit flies like a banana
- Outside of a dog, a book is a man's best friend
- One morning I shot an elephant in my pajamas
- Don't eat the pizza with a knife and fork

A parser, nevertheless, produces multiple parses for these sentences.

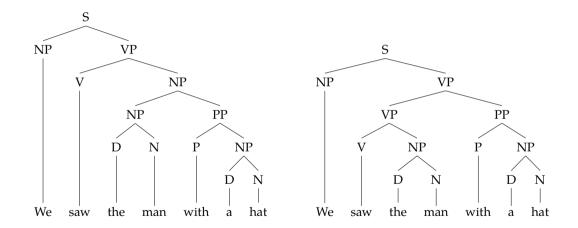
- Time flies like an arrow; fruit flies like a banana
- Outside of a dog, a book is a man's best friend; inside it's too hard to read
- One morning I shot an elephant in my pajamas
- Don't eat the pizza with a knife and fork

A parser, nevertheless, produces multiple parses for these sentences.

- Time flies like an arrow; fruit flies like a banana
- Outside of a dog, a book is a man's best friend; inside it's too hard to read
- One morning I shot an elephant in my pajamas. How he got in my pajamas, I don't know.
- Don't eat the pizza with a knife and fork
- A parser, nevertheless, produces multiple parses for these sentences.

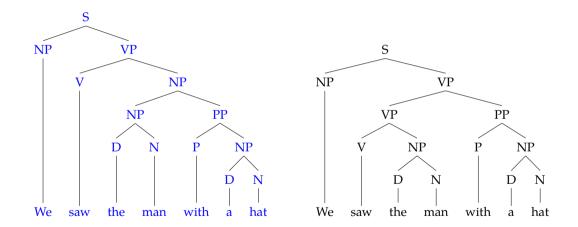
- Time flies like an arrow; fruit flies like a banana
- Outside of a dog, a book is a man's best friend; inside it's too hard to read
- One morning I shot an elephant in my pajamas. How he got in my pajamas, I don't know.
- Don't eat the pizza with a knife and fork; the one with mushrooms is better.
- A parser, nevertheless, produces multiple parses for these sentences.

The task: choosing the most plausible parse



CFG recap Ambiguity Statistical parsing PCFGs Evaluation

The task: choosing the most plausible parse



Statistical parsing

- Find the most plausible parse of an input string given all possible parses
- We need a scoring function, for each parse, given the input
- We typically use probabilities for scoring, task becomes finding the parse (or tree), t, given the input string *w*

$$t_{\text{best}} = \arg\max_{t} P(t \mid \boldsymbol{w})$$

• Note that some ambiguities need a larger context than the sentence to be resolved correctly

Probability refresher (1)

- Probability is a measure of (un)certainty of an event
- We quantify the probability of an event with a number between 0 and 1
 - 0 the event is impossible
 - 0.5 the event is as likely to happen (or happened) as it is not
 - 1 the event is certain
- All possible outcomes of a trial (experiment or observation) is called the sample space (Ω)

Axioms of probability states that

- 1. $P(E) \in \mathbb{R}, P(E) \ge 0$
- 2. $P(\Omega) = 1$
- 3. For *disjoint* events E_1 and E_2 , $P(E_1 \cup E_2) = P(E_1) + P(E_2)$

Probability refresher (2)

Joint and conditional probabilities, chain rule

- Joint probability of two events is noted as $\mathsf{P}(x,y)$
- The conditional probability is defined as

$$P(x|y) = \frac{P(x,y)}{P(y)}$$
 or $P(x,y) = P(x|y)P(y)$

• If the events x and y are independent,

$$P(x|y) = P(x), P(y|x) = p(y), P(x,y) = P(x)P(y)$$

• For more than two variables (chain rule):

$$\mathbf{P}(\mathbf{x},\mathbf{y},z) = \mathbf{P}(z|\mathbf{x},\mathbf{y})\mathbf{P}(\mathbf{y}|\mathbf{x})\mathbf{P}(\mathbf{x}) = \mathbf{P}(\mathbf{x}|\mathbf{y},z)\mathbf{P}(\mathbf{y}|z)\mathbf{P}(z) = \dots$$

• If all are independent

$$P(x, y, z) = P(x)P(y)P(z)$$

Ç. Çöltekin, SfS / University of Tübingen

Probabilistic context free grammars (PCFG)

• A probabilistic context free grammar augments a CFG by adding a probability value to each rule

$$A \rightarrow \alpha$$
 [p]

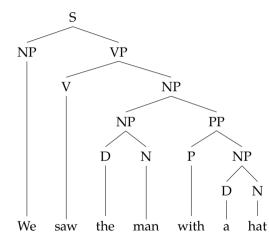
where A is a non-terminal, α is string of terminals and non-terminals, and p *is the probability associated with the rule*

- Like CFGs, a PCFG accepts a sentence if it can be derived from S with rules $\mathsf{R}_1 \dots \mathsf{R}_k$
- The probability of a parse tree t of input string w, $P(t \,|\, w),$ corresponding to the derivation $R_1 \dots R_k$ is

$$P(t \mid \boldsymbol{w}) = \prod_{1}^{k} p(R_{i})$$

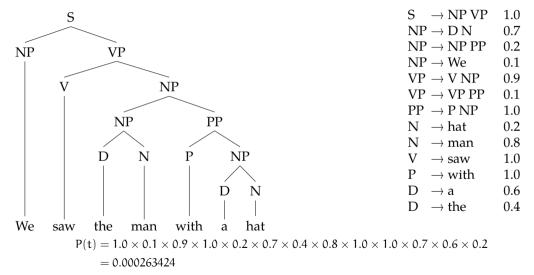
where $p(R_{\mathfrak{i}})$ is the probability of the rule $R_{\mathfrak{i}}$

PCFG example (1)



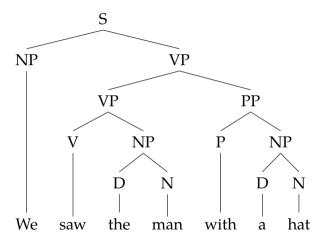
S	ightarrow NP VP	1.0
NP	$ ightarrow \mathrm{D}\mathrm{N}$	0.7
NP	$\to \mathrm{NP}\ \mathrm{PP}$	0.2
NP	$H \to \mathrm{We}$	0.1
VP	$\rightarrow V \ NP$	0.9
VP	$\rightarrow \mathrm{VP} \ \mathrm{PP}$	0.1
\mathbf{PP}	ightarrow P NP	1.0
Ν	\rightarrow hat	0.2
Ν	\rightarrow man	0.8
V	$\rightarrow \mathbf{saw}$	1.0
Р	ightarrow with	1.0
D	\rightarrow a	0.6
D	\rightarrow the	0.4

PCFG example (1)



CFG recap Ambiguity Statistical parsing PCFGs Evaluation

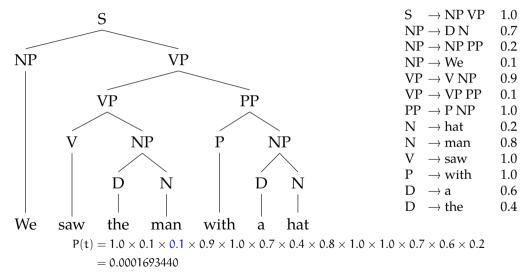
PCFG example (2)



S	ightarrow NP VP	1.0
NP	$ ightarrow \mathrm{D}\mathrm{N}$	0.7
NP	$\to \mathrm{NP} \ \mathrm{PP}$	0.2
NP	$H \to \mathrm{We}$	0.1
VP	$\rightarrow V \ NP$	0.9
VP	$\rightarrow \mathrm{VP} \ \mathrm{PP}$	0.1
PP	$\to P \ NP$	1.0
Ν	\rightarrow hat	0.2
Ν	\rightarrow man	0.8
V	$\rightarrow \mathbf{saw}$	1.0
Р	ightarrow with	1.0
D	\rightarrow a	0.6
D	\rightarrow the	0.4

CFG recap Ambiguity Statistical parsing PCFGs Evaluation

PCFG example (2)



Where do the rule probabilities come from?

- Supervised: estimate from a treebank, e.g., using maximum likelihood estimation
- Unsupervised: expectation-maximization (EM)

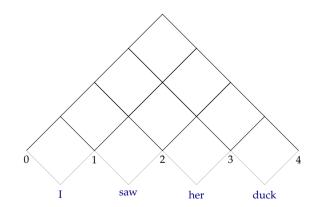
PCFGs - an interim summary

- PCFGs assign probabilities to parses based on CFG rules used during the parse
- PCFGs assume that the rules are independent
- PCFGs are generative models, they assign probabilities to P(t, *w*), we can calcuate the probability of a sentence by

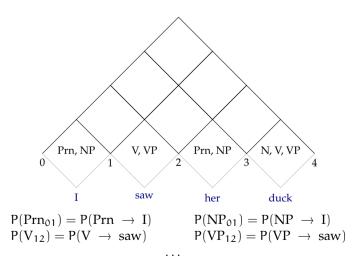
$$P(\boldsymbol{w}) = \sum_{t} P(t, \boldsymbol{w}) = \sum_{t} P(t)$$

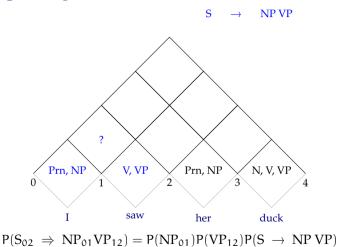
PCFG chart parsing

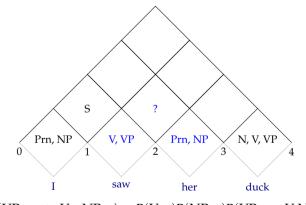
- Both CKY and Earley algorithms can be adapted to PCFG parsing
- CKY matches PCFG parsing quite well
 - to get the best parse, store the constituent with the highest probability in every cell of the chart
 - to get n-best best parse (beam search), store the n-best constituents in every cell in the chart



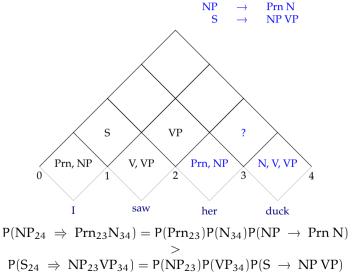
Ç. Çöltekin, SfS / University of Tübingen





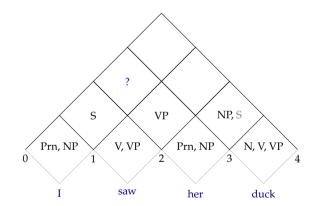


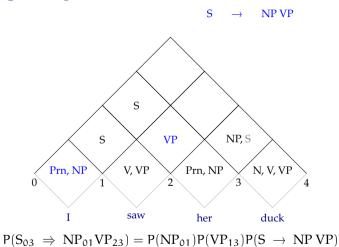
 $\mathsf{P}(\mathsf{VP}_{13} \ \Rightarrow \ \mathsf{V}_{12}\mathsf{NP}_{23}) = \mathsf{P}(\mathsf{V}_{12})\mathsf{P}(\mathsf{NP}_{23})\mathsf{P}(\mathsf{VP} \ \rightarrow \ \mathsf{V} \ \mathsf{NP})$

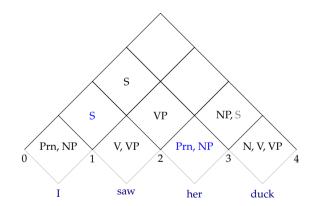


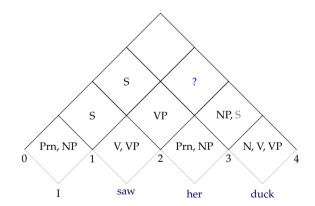
Ç. Çöltekin, SfS / University of Tübingen

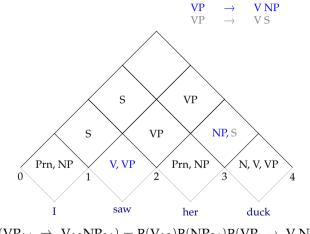
Winter Semester 2020/21 19 / 29



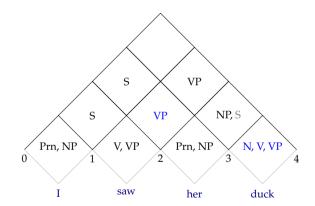


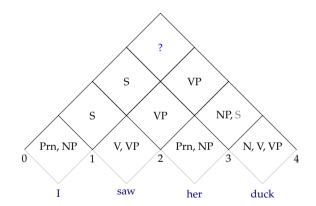


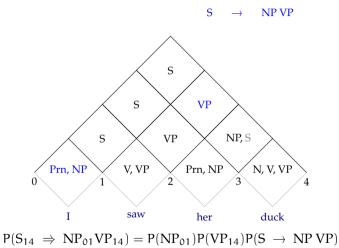


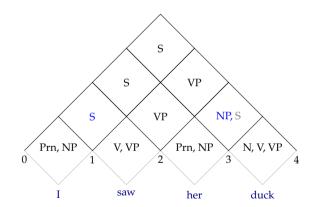


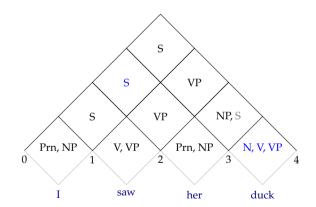
 $\mathsf{P}(\mathsf{VP}_{14} \ \Rightarrow \ \mathsf{V}_{12}\mathsf{NP}_{24}) = \mathsf{P}(\mathsf{V}_{12})\mathsf{P}(\mathsf{NP}_{24})\mathsf{P}(\mathsf{VP} \ \rightarrow \ \mathsf{V}\,\mathsf{NP})$











What makes the difference in PCFG probabilities?

	1.0		1.0
$S \Rightarrow NP VP$	1.0	$S \Rightarrow NP VP$	1.0
$NP \Rightarrow We$	0.1	$NP \Rightarrow We$	0.1
$VP \Rightarrow VP PP$	0.1	$VP \Rightarrow V NP$	0.7
$\mathrm{VP} \Rightarrow \mathrm{V}\mathrm{NP}$	0.8	$V \Rightarrow saw$	1.0
$V \Rightarrow saw$	1.0	$NP \Rightarrow NP PP$	0.2
$\mathrm{NP} \Rightarrow \mathrm{D} \ \mathrm{N}$	0.7	$\mathrm{NP} \Rightarrow \mathrm{D} \ \mathrm{N}$	0.7
$D \Rightarrow the$	0.4	$D \Rightarrow the$	0.4
$N \Rightarrow man$	0.8	$N \Rightarrow man$	0.8
$PP \Rightarrow P NP$	1.0	$PP \Rightarrow P NP$	1.0
$P \Rightarrow with$	1.0	$P \Rightarrow with$	1.0
$\mathrm{NP} \Rightarrow \mathrm{D}\mathrm{N}$	0.7	$\text{NP} \Rightarrow \text{D} \text{ N}$	0.7
$D \Rightarrow a$	0.6	$D \Rightarrow a$	0.6
$N \Rightarrow hat$	0.2	$N \Rightarrow hat$	0.2

What makes the difference in PCFG probabilities?

	1.0		1.0
$S \Rightarrow NP VP$	1.0	$S \Rightarrow NP VP$	1.0
$\text{NP} \Rightarrow \text{We}$	0.1	$NP \Rightarrow We$	0.1
$VP \Rightarrow VP PP$	0.1	$\mathrm{VP} \Rightarrow \mathrm{V} \ \mathrm{NP}$	0.7
$\mathrm{VP} \Rightarrow \mathrm{V}\mathrm{NP}$	0.8	$V \Rightarrow saw$	1.0
$V \Rightarrow saw$	1.0	$NP \Rightarrow NP PP$	0.2
$NP \Rightarrow D \ N$	0.7	$\text{NP} \Rightarrow \text{D} \text{ N}$	0.7
$D \Rightarrow the$	0.4	$D \Rightarrow the$	0.4
$N \Rightarrow man$	0.8	$N \Rightarrow man$	0.8
$PP \Rightarrow P NP$	1.0	$PP \Rightarrow P NP$	1.0
$P \Rightarrow with$	1.0	$P \Rightarrow with$	1.0
$NP \Rightarrow D \ N$	0.7	$\text{NP} \Rightarrow \text{D} \text{ N}$	0.7
$D \Rightarrow a$	0.6	$D \Rightarrow a$	0.6
$N \Rightarrow hat$	0.2	$N \Rightarrow hat$	0.2

The parser's choice would not be affected by lexical items!

What is wrong with PCFGs?

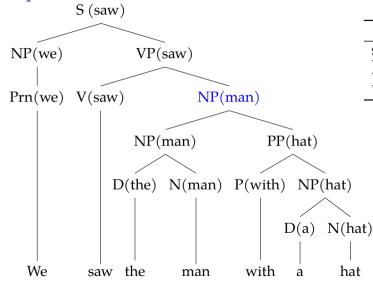
- In general: the assumption of independence
- The parents affect the correct choice for children, for example, in English NP $\,\to\,$ Prn is more likely in the subject position
- The lexical units affect the correct decision, for example:
 - We eat the pizza with hands
 - We eat the pizza with mushrooms
- Additionally: PCFGs use local context, difficult to incorporate arbitrary/global features for disambiguation

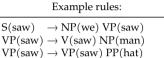
Solutions to PCFG problems

- Independence assumptions can be relaxed by either
 - Parent annotation
 - Lexicalization
 - Reranking
- To condition on arbitrary/global information: discriminative models
- Most practical PCFG parsers are lexicalized, and often use a re-ranker conditioning on other (global) features

Lexicalizing PCFGs

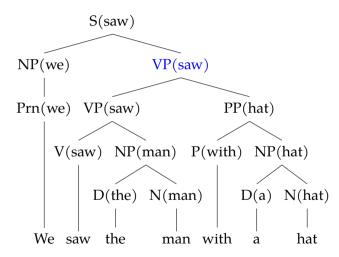
- Replace non-terminal X with X(h), where h is a tuple with the lexical word and its POS tag
- Now the grammar can capture (head-driven) lexical dependencies
- But number of nonterminals grow by $|V|\times |T|$
- Estimation becomes difficult (many rules, data sparsity)
- Some treebanks (e.g., Penn Treebank) do not annotate heads, they are automatically annotated (based on heuristics)





 $VP(saw) \rightarrow VP(saw) PP(telescope)$

Example lexicalized derivation



Example rules:
$S(saw) \rightarrow NP(we) VP(saw)$ $VP(saw) \rightarrow V(saw) NP(man)$
$VP(saw) \rightarrow VP(saw) PP(hat)$
$VP(saw) \rightarrow VP(saw) PP(telescope)$

Evaluating the parser output

- A parser can be evaluated
 - $extrinsically\ based on its effect on a task (e.g., machine translation) where it is used$

intrinsically based on the match with ideal parsing

- The typically evaluation (intrinsic) is based on a gold standard (GS)
- Exact match is often
 - very difficult to achieve (think about a 50-word newspaper sentence)
 - not strictly necessary (recovering parts of the parse can be useful for many purposes)

Parser evaluation metrics

• Common evaluation metrics are (PARSEVAL):

precision the ratio of correctly predicted nodes
 recall the nodes (in GS) that are predicted correctly
f-measure harmonic mean of precision and recall (2×precision×recall
precision+recall)

• The measures can be

unlabled the spans of the nodes are expected to match labeled the node label should also match

- Crossing brackets (or average non-crossing brackets)
 - (We (saw (them (with binoculars)))) (We ((saw them) (with binoculars)))
- Measures can be averaged per constituent (micro average), or over sentences (macro average)

PARSEVAL example Gold standard: S Parser output: NP VP NP NP VP N NP PP N VP PP NP NP NP N N Ν N We hat the with We the with hat saw man а saw man а precision = $\frac{6}{7}$ recall = $\frac{6}{7}$ f-measure = $\frac{6}{7}$

Problems with PARSEVAL metrics

- PARSEVAL metrics favor certain type of structures
 - Results are surprisingly well for flat tree structures (e.g., Penn treebank)
 - Results of some mistakes are catastrophic (e.g., low attachment)
- Not all mistakes are equally important for semantic distinctions
- Some alternatives:
 - Extrinsic evaluation
 - Evaluation based on extracted dependencies

- PCFG is a simple attempt to augment CFG with probabilities
- PCFG parsing alone is suboptimal: independence assumptions are too strong
- Solutions include (a combination of) lexicalization, parent annotation and re-ranking
- Reading suggestion: jurafsky2009

- PCFG is a simple attempt to augment CFG with probabilities
- PCFG parsing alone is suboptimal: independence assumptions are too strong
- Solutions include (a combination of) lexicalization, parent annotation and re-ranking
- Reading suggestion: jurafsky2009

Next:

• Dependency grammars and dependency parsing

Acknowledgments, references, additional reading material

Aho, Alfred V., Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman (2007). Compilers: Principles, Techniques, & Tools. Pearson/Addison Wesley. ISBN: 9780321486813.

Grune, Dick and Ceriel J.H. Jacobs (2007). Parsing Techniques: A Practical Guide. second. Monographs in Computer Science. The first edition is available at http://dickgrune.com/Books/PTAPG_1st_Edition/BookBody.pdf. Springer New York. ISBN: 9780387689548.