
LL(k): Deterministic top-down parsing
Parsing

ISCL-BA-06

Çağrı Çöltekin
ccoltekin@sfs.uni-tuebingen.de

University of Tübingen
Seminar für Sprachwissenschaft

Winter Semester 2020/21

version: 6e4a5d2+ @2021-03-07

Top-down parsing: recap Recursive descent Table driven parsing LL(1)

So far …

• Formal languages and automata
• General parsing techniques

– Top-down – Bottom-up
– Directional – non-directional

• Chart parsing
– CKY
– Early

Coming next:
• Deterministic context-free parsing
• Probabilistic context-free parsing
• Dependency parsing

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 1 / 18

Top-down parsing: recap Recursive descent Table driven parsing LL(1)

Recap: top-down parsing

• General idea: try to generate the input using the grammar rules
– Initialize with the start symbol
– Rewrite each non terminal, replacing them with matching RHS in the grammar
– When there are multiple options, follow one, backtrack and follow others when

done
– Repeat until input sentence is generated (or failed)

• If we always expand the left-most symbol first, the parser is directional, the
resulting derivation is the left-most derivation

• Parsing proceeds with two actions:
predict expanding all RHS of the left-most non-terminal
match if the left-most item is a terminal, it has to match the next input symbol

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 2 / 18

Top-down parsing: recap Recursive descent Table driven parsing LL(1)

Top-down parsing: an example

S → NP VP NP → d AN NP → AN
VP → v NP AN → a AN AN → n

MATCHED SENT. FORM INPUT ACTION

S $ d n v a n initNP VP $ P: S → NP VPd AN VP $ P: NP → d AN

AN VP $ d n v a n P: NP → ANn VP $ P: AN → n

a AN VP $ d n v a n P: AN → a ANa AN VP $ d n v a n P: match 7

n VP $ d n v a n P: match 7

d AN VP $ n v a n match dd VP $ P: AN → n

n a AN VP $ n v a n P: AN → a ANa AN VP $ n v a n P: match 7

d n VP $ v a n match nv NP $ P: VP → v NPd n v NP $ a n match vAN $ a n P: NP → AN

d n v d AN $ a n P: NP → d ANd AN $ a n P: match 7

d n v a AN $ a n P: AN → a AN

d n v n $ a n P: AN → nn $ a n P: match 7

d n v a AN $ n match ad n v a n $ n P: AN → n

n a AN $ n P: AN → a ANa AN $ n match 7

d n v a n $ match n

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 3 / 18

Top-down parsing: recap Recursive descent Table driven parsing LL(1)

Top-down parsing

• If we follow the predicted productions, we obtain a leftmost derivation
• Lots of unnecessary work, backtracking because of useless predictions
• Most of the unnecessary work is done in predict
• In this lecture we will look at ways to reduce this
• For some grammars, the unnecessary predictions can be completely avoided,
resulting in a deterministic parser

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 4 / 18

Top-down parsing: recap Recursive descent Table driven parsing LL(1)

Recursive descent parser

• Recursive descent parsers are top-down,
recursive parsers where each
non-terminal is implemented as a
procedure

• For each symbol on a RHS, we either
– call the sub-procedure (another

nonterminal)
– or match the input symbol

1: procedure A()
2: select a rule A → X1, . . . ,Xk

3: for i = 1 to k do
4: if Xi is a nonterminal then
5: call Xi()
6: else if Xi = current input then
7: advance the input pointer
8: else
9: return error

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 5 / 18

Top-down parsing: recap Recursive descent Table driven parsing LL(1)

Recursive descent parser
some remarks

• The interesting idea is that now the parser is a program in a(ny)
programming language

• In its general form a recursive descent parser is a backtracking parser
• If we can select a rule deterministically, then we can get a deterministic parser
• Deterministic parsing generally requires a lookahead mechanism:

– Given the non-terminal to expand/rewrite, and the next input symbol(s), for
some grammars, we can build a table that can deterministically guide a parser

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 6 / 18

Top-down parsing: recap Recursive descent Table driven parsing LL(1)

Table driven parsing

S → NP VP NP → d AN NP → AN
VP → v NP AN → a AN AN → n

non-term. input (lookahead)
d a n v $

S S → NP VP S → NP VP S → NP VP S → NP VP
NP NP → d AN NP → AN NP → AN
VP VP → v NP
AN AN → a AN AN → n

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 7 / 18

Top-down parsing: recap Recursive descent Table driven parsing LL(1)

Table driven parsing: example

non-term. input (lookahead)
d a n v $

S S → NP VP S → NP VP S → NP VP S → NP VP
NP NP → d AN NP → AN NP → AN
VP VP → v NP
AN AN → a AN AN → n

MATCHED SENT. FORM INPUT ACTION

S $ d n v a n initNP VP $ P: S → NP VPd AN VP $ P: NP → d ANd AN VP $ n v a n match dn VP $ P: AN → nd n VP $ v a n match nv NP $ P: VP → v NPd n v NP $ a n match vAN $ P: NP → ANa AN $ P: AN → a ANd n v a AN $ n match an $ P: AN → nd n v a n $ match n

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 8 / 18

Top-down parsing: recap Recursive descent Table driven parsing LL(1)

FIRST and FOLLOW sets

• FIRST and FOLLOW sets are useful for both
top-down and bottom-up table driven parsers

• FIRST set of a non-terminal A, FIRST(A), is the set of
initial terminal symbols of all strings generated by A

• FOLLOW set of a non-terminal A, FOLLOW(A), is
the set of initial terminals that may follow any A
according to the grammar

• Both sets generalize to any sentential form
• FIRST and FOLLOW sets are also useful for error
recovery during parsing

S

α… A

c …γ

a …β

FIRST(A)

FOLLOW(A)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 9 / 18

Top-down parsing: recap Recursive descent Table driven parsing LL(1)

Computing the FIRST set

• The FIRST set of a terminal symbol contains only itself
• To compute the FIRST sets of nonterminals, repeat the following until no new
symbols are added to any of the sets
1. For each rule X → Y1Y2 . . . Yk in the grammar,

• place all terminals in FIRST(Yi) if Y1Y2 . . . Yi−1
∗⇒ ϵ

• if ϵ is in all FIRST(Yi) for all i = 1, …, k, add ϵ to FIRST(X)
2. if the rule processed is X → ϵ, add ϵ to FIRST(X)

• Then, FIRST set of any sentential form, FIRST(X1X2 . . .Xk) can be computed:
– For i = 1, . . . , k

1. Add all non-ϵ symbols from Xi to FIRST(X1X2 . . .Xk)
2. If ϵ ̸∈ FIRST(Xi), stop

– if ϵ ∈ FIRST(Xi) for all i = 1, . . . , k, add ϵ to FIRST(X1X2 . . .Xk)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 10 / 18

Top-down parsing: recap Recursive descent Table driven parsing LL(1)

Computing the FOLLOW set

• Calculate the FIRST sets
1. Place $ in the FOLLOW(S)
2. For a production A → αBβ, add everything in FIRST(β) except ϵ to

FOLLOW(B)
3. For a production A → αB, or A → αBβwhere FIRST(β) contains ϵ, add all

items in FOLLOW(A) to FOLLOW(B)
4. Repeat 3 until no more items are added to any of the FOLLOW sets

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 11 / 18

Top-down parsing: recap Recursive descent Table driven parsing LL(1)

LL(1) grammars

• A grammar is called and LL(1) grammar, if we can find a table similar to our
example:

– If there is only a single prediction for each (non-terminal, lookahead) pair, then
the grammar is an LL(1) grammar

• L’s stand for Left-to-right and Leftmost derivation, (1) indicates the number of
lookahead symbols needed

• If we increase the number of lookahead symbols, we get LL(k) grammars
• LL(k) grammar can be parsed with a top-down parser without backtracking
• Not every context free grammar is LL(k)
• But, programming language grammars are mostly LL(1)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 12 / 18

Top-down parsing: recap Recursive descent Table driven parsing LL(1)

LL(1) grammars
formal definition

• If a grammar is LL(1) then whenever A → α and A → β are two rules in
the grammar, then

– The sets of non-terminals of strings derived from α and β are disjoint
– Only one (or none) of α and β can derive the empty string
– If β ∗⇒ ϵ, α cannot start with a terminal that may follow A

• In other words:
– FIRST(α) and FIRST(β) are disjoint
– if ϵ is in FIRST(α), then FIRST(β) and FOLLOW(A) are disjoint sets

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 13 / 18

Top-down parsing: recap Recursive descent Table driven parsing LL(1)

Construction of LL(1) table

• If there are no ϵ productions, the table can be easily constructed from the
FIRST sets

• Otherwise, after computing FIRST and FOLLOW sets, the following
procedure fills the LL(1) table

– For each rule A → α in the grammar
1. For each terminal a in FIRST(α), add A → α to table cell [A, a]
2. If ϵ is in FIRST(α), then for each terminal b in FOLLOW(A) add A → α to table

cell [A, b]

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 14 / 18

Top-down parsing: recap Recursive descent Table driven parsing LL(1)

Example
calculating FIRST sets

S → BA A → aBA | ϵ B → CD D → bCD | ϵ C → cSc | d

• Repeat until no additions
1. For each X → Y1Y2 . . . Yk

• place all terminals in FIRST(Yi) if
Y1Y2 . . . Yi−1

∗⇒ ϵ

• if ϵ is in all FIRST(Yi) for all i =
1, …, k, add ϵ to FIRST(X)

2. if the rule processed is X → ϵ,
add ϵ to FIRST(X)

FIRST(S) = {c,d}
FIRST(A) = {a,ϵ}
FIRST(B) = {c,d}
FIRST(C) = {c,d}
FIRST(D) = {b,ϵ}

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 15 / 18

Top-down parsing: recap Recursive descent Table driven parsing LL(1)

Example
calculating FOLLOW sets

S → BA A → aBA | ϵ B → CD D → bCD | ϵ C → cSc | d

1. Place $ in the FOLLOW(S)
2. For a production A → αBβ, add

everything in FIRST(β) except ϵ to
FOLLOW(B)

3. For A → αB, or A → αBβwhere
FIRST(β) contains ϵ, add items in
FOLLOW(A) to FOLLOW(B)

S A B C D
FIRST {c,d} {a,ϵ} {c,d} {c,d} {b,ϵ}

FIRST(S) = {c,$}
FIRST(A) = {c,$}
FIRST(B) = {a,c,$}
FIRST(C) = {a,b,c,$}
FIRST(D) = {a,c,$}

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 16 / 18

Top-down parsing: recap Recursive descent Table driven parsing LL(1)

Example
constructing the LL(1) table

S → BA A → aBA | ϵ B → CD D → bCD | ϵ C → cSc | d

S A B C D
FIRST {c,d} {a,ϵ} {c,d} {c,d} {b,ϵ}

FOLLOW {c,$} {c,$} {a,c,$} {a,b,c,$} {a,c,$}

• For each rule A → α in the grammar
1. For each terminal a in FIRST(α), add

A → α to table cell [A, a]
2. If ϵ is in FIRST(α), then for each terminal b

in FOLLOW(A) add A → α to table cell
[A, b]

a b c d $
S BA BA
A aBA ϵ ϵ

B CD CD
C cSc d
D ϵ bCD ϵ ϵ

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 17 / 18

Top-down parsing: recap Recursive descent Table driven parsing LL(1)

Summary
• LL(1) grammars can be parsed deterministically (without backtracking)
using top-down parsers

• Like any top-down parser, left-recursion needs additional care
• Not every context free grammar is LL(k), but programming language
grammars are mostly LL(1)

• LL(k) parsing is intuitive and relatively easy to construct by hand, but LR(k)
grammars (bottom-up, deterministic) are more powerful (next lecture)

• Suggested reading: Grune and Jacobs (2007, ch.8), Aho et al. (2007, Section
4.4)

Next:
• Deterministic bottom-up parsing
• Suggested reading: Grune and Jacobs (2007, ch.9), Aho et al. (2007, Section
4.5–4.7)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 18 / 18

Acknowledgments, references, additional reading material

Aho, Alfred V., Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman (2007). Compilers: Principles, Techniques, & Tools. Pearson/Addison Wesley. ISBN:
9780321486813.

Grune, Dick and Ceriel J.H. Jacobs (2007). Parsing Techniques: A Practical Guide. second. Monographs in Computer Science. The first edition is
available at http://dickgrune.com/Books/PTAPG_1st_Edition/BookBody.pdf. Springer New York. ISBN: 9780387689548.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 A.1

Exercise
compute the FIRST and FOLLOW sets, and LL(1) table for S → iEtSQ | a Q → eS | ϵ E → b

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 A.2
blank

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 A.3

blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 A.4

blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 A.5

http://dickgrune.com/Books/PTAPG_1st_Edition/BookBody.pdf

blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 A.6

blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 A.7

blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 A.8

	LL(k): Deterministic top-down parsing
	
	So far …

	Top-down parsing: recap
	Recap: top-down parsing
	Top-down parsing: an example
	Top-down parsing

	Recursive descent
	Recursive descent parser
	Recursive descent parser

	Table driven parsing
	Table driven parsing
	Table driven parsing: example
	FIRST and FOLLOW sets
	Computing the FIRST set
	Computing the FOLLOW set

	LL(1)
	LL(1) grammars
	LL(1) grammars
	Construction of LL(1) table
	Example
	Example
	Example
	Summary

	Appendix
	Acknowledgments, references, additional reading material
	Exercise

