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Top-down parsing: recap Recursive descent Table driven parsing LL(1)

So far …

• Formal languages and automata
• General parsing techniques

– Top-down – Bottom-up
– Directional – non-directional

• Chart parsing
– CKY
– Early

Coming next:
• Deterministic context-free parsing
• Probabilistic context-free parsing
• Dependency parsing
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Recap: top-down parsing

• General idea: try to generate the input using the grammar rules
– Initialize with the start symbol
– Rewrite each non terminal, replacing them with matching RHS in the grammar
– When there are multiple options, follow one, backtrack and follow others when

done
– Repeat until input sentence is generated (or failed)

• If we always expand the left-most symbol first, the parser is directional, the
resulting derivation is the left-most derivation

• Parsing proceeds with two actions:
predict expanding all RHS of the left-most non-terminal
match if the left-most item is a terminal, it has to match the next input symbol
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Top-down parsing: an example

S → NP VP NP → d AN NP → AN
VP → v NP AN → a AN AN → n

MATCHED SENT. FORM INPUT ACTION

S $ d n v a n initNP VP $ P: S → NP VPd AN VP $ P: NP → d AN

AN VP $ d n v a n P: NP → ANn VP $ P: AN → n

a AN VP $ d n v a n P: AN → a ANa AN VP $ d n v a n P: match 7

n VP $ d n v a n P: match 7

d AN VP $ n v a n match dd VP $ P: AN → n

n a AN VP $ n v a n P: AN → a ANa AN VP $ n v a n P: match 7

d n VP $ v a n match nv NP $ P: VP → v NPd n v NP $ a n match vAN $ a n P: NP → AN

d n v d AN $ a n P: NP → d ANd AN $ a n P: match 7

d n v a AN $ a n P: AN → a AN

d n v n $ a n P: AN → nn $ a n P: match 7

d n v a AN $ n match ad n v a n $ n P: AN → n

n a AN $ n P: AN → a ANa AN $ n match 7

d n v a n $ match n
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Top-down parsing

• If we follow the predicted productions, we obtain a leftmost derivation
• Lots of unnecessary work, backtracking because of useless predictions
• Most of the unnecessary work is done in predict
• In this lecture we will look at ways to reduce this
• For some grammars, the unnecessary predictions can be completely avoided,
resulting in a deterministic parser
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Recursive descent parser

• Recursive descent parsers are top-down,
recursive parsers where each
non-terminal is implemented as a
procedure

• For each symbol on a RHS, we either
– call the sub-procedure (another

nonterminal)
– or match the input symbol

1: procedure A( )
2: select a rule A → X1, . . . ,Xk

3: for i = 1 to k do
4: if Xi is a nonterminal then
5: call Xi()
6: else if Xi = current input then
7: advance the input pointer
8: else
9: return error
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Recursive descent parser
some remarks

• The interesting idea is that now the parser is a program in a(ny)
programming language

• In its general form a recursive descent parser is a backtracking parser
• If we can select a rule deterministically, then we can get a deterministic parser
• Deterministic parsing generally requires a lookahead mechanism:

– Given the non-terminal to expand/rewrite, and the next input symbol(s), for
some grammars, we can build a table that can deterministically guide a parser
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Table driven parsing

S → NP VP NP → d AN NP → AN
VP → v NP AN → a AN AN → n

non-term. input (lookahead)
d a n v $

S S → NP VP S → NP VP S → NP VP S → NP VP
NP NP → d AN NP → AN NP → AN
VP VP → v NP
AN AN → a AN AN → n
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Table driven parsing: example

non-term. input (lookahead)
d a n v $

S S → NP VP S → NP VP S → NP VP S → NP VP
NP NP → d AN NP → AN NP → AN
VP VP → v NP
AN AN → a AN AN → n

MATCHED SENT. FORM INPUT ACTION

S $ d n v a n initNP VP $ P: S → NP VPd AN VP $ P: NP → d ANd AN VP $ n v a n match dn VP $ P: AN → nd n VP $ v a n match nv NP $ P: VP → v NPd n v NP $ a n match vAN $ P: NP → ANa AN $ P: AN → a ANd n v a AN $ n match an $ P: AN → nd n v a n $ match n
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FIRST and FOLLOW sets

• FIRST and FOLLOW sets are useful for both
top-down and bottom-up table driven parsers

• FIRST set of a non-terminal A, FIRST(A), is the set of
initial terminal symbols of all strings generated by A

• FOLLOW set of a non-terminal A, FOLLOW(A), is
the set of initial terminals that may follow any A
according to the grammar

• Both sets generalize to any sentential form
• FIRST and FOLLOW sets are also useful for error
recovery during parsing

S

α… A

c …γ

a …β

FIRST(A)

FOLLOW(A)
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Computing the FIRST set

• The FIRST set of a terminal symbol contains only itself
• To compute the FIRST sets of nonterminals, repeat the following until no new
symbols are added to any of the sets
1. For each rule X → Y1Y2 . . . Yk in the grammar,

• place all terminals in FIRST(Yi) if Y1Y2 . . . Yi−1
∗⇒ ϵ

• if ϵ is in all FIRST(Yi) for all i = 1, …, k, add ϵ to FIRST(X)
2. if the rule processed is X → ϵ, add ϵ to FIRST(X)

• Then, FIRST set of any sentential form, FIRST(X1X2 . . .Xk) can be computed:
– For i = 1, . . . , k

1. Add all non-ϵ symbols from Xi to FIRST(X1X2 . . .Xk)
2. If ϵ ̸∈ FIRST(Xi), stop

– if ϵ ∈ FIRST(Xi) for all i = 1, . . . , k, add ϵ to FIRST(X1X2 . . .Xk)
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Computing the FOLLOW set

• Calculate the FIRST sets
1. Place $ in the FOLLOW(S)
2. For a production A → αBβ, add everything in FIRST(β) except ϵ to

FOLLOW(B)
3. For a production A → αB, or A → αBβwhere FIRST(β) contains ϵ, add all

items in FOLLOW(A) to FOLLOW(B)
4. Repeat 3 until no more items are added to any of the FOLLOW sets
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LL(1) grammars

• A grammar is called and LL(1) grammar, if we can find a table similar to our
example:

– If there is only a single prediction for each (non-terminal, lookahead) pair, then
the grammar is an LL(1) grammar

• L’s stand for Left-to-right and Leftmost derivation, (1) indicates the number of
lookahead symbols needed

• If we increase the number of lookahead symbols, we get LL(k) grammars
• LL(k) grammar can be parsed with a top-down parser without backtracking
• Not every context free grammar is LL(k)
• But, programming language grammars are mostly LL(1)
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LL(1) grammars
formal definition

• If a grammar is LL(1) then whenever A → α and A → β are two rules in
the grammar, then

– The sets of non-terminals of strings derived from α and β are disjoint
– Only one (or none) of α and β can derive the empty string
– If β ∗⇒ ϵ, α cannot start with a terminal that may follow A

• In other words:
– FIRST(α) and FIRST(β) are disjoint
– if ϵ is in FIRST(α), then FIRST(β) and FOLLOW(A) are disjoint sets
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Construction of LL(1) table

• If there are no ϵ productions, the table can be easily constructed from the
FIRST sets

• Otherwise, after computing FIRST and FOLLOW sets, the following
procedure fills the LL(1) table

– For each rule A → α in the grammar
1. For each terminal a in FIRST(α), add A → α to table cell [A, a]
2. If ϵ is in FIRST(α), then for each terminal b in FOLLOW(A) add A → α to table

cell [A, b]
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Example
calculating FIRST sets

S → BA A → aBA | ϵ B → CD D → bCD | ϵ C → cSc | d

• Repeat until no additions
1. For each X → Y1Y2 . . . Yk

• place all terminals in FIRST(Yi) if
Y1Y2 . . . Yi−1

∗⇒ ϵ

• if ϵ is in all FIRST(Yi) for all i =
1, …, k, add ϵ to FIRST(X)

2. if the rule processed is X → ϵ,
add ϵ to FIRST(X)

FIRST(S) = {c,d}
FIRST(A) = {a,ϵ}
FIRST(B) = {c,d}
FIRST(C) = {c,d}
FIRST(D) = {b,ϵ}
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Example
calculating FOLLOW sets

S → BA A → aBA | ϵ B → CD D → bCD | ϵ C → cSc | d

1. Place $ in the FOLLOW(S)
2. For a production A → αBβ, add

everything in FIRST(β) except ϵ to
FOLLOW(B)

3. For A → αB, or A → αBβwhere
FIRST(β) contains ϵ, add items in
FOLLOW(A) to FOLLOW(B)

S A B C D
FIRST {c,d} {a,ϵ} {c,d} {c,d} {b,ϵ}

FIRST(S) = {c,$}
FIRST(A) = {c,$}
FIRST(B) = {a,c,$}
FIRST(C) = {a,b,c,$}
FIRST(D) = {a,c,$}
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Example
constructing the LL(1) table

S → BA A → aBA | ϵ B → CD D → bCD | ϵ C → cSc | d

S A B C D
FIRST {c,d} {a,ϵ} {c,d} {c,d} {b,ϵ}

FOLLOW {c,$} {c,$} {a,c,$} {a,b,c,$} {a,c,$}

• For each rule A → α in the grammar
1. For each terminal a in FIRST(α), add

A → α to table cell [A, a]
2. If ϵ is in FIRST(α), then for each terminal b

in FOLLOW(A) add A → α to table cell
[A, b]

a b c d $
S BA BA
A aBA ϵ ϵ

B CD CD
C cSc d
D ϵ bCD ϵ ϵ
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Summary
• LL(1) grammars can be parsed deterministically (without backtracking)
using top-down parsers

• Like any top-down parser, left-recursion needs additional care
• Not every context free grammar is LL(k), but programming language
grammars are mostly LL(1)

• LL(k) parsing is intuitive and relatively easy to construct by hand, but LR(k)
grammars (bottom-up, deterministic) are more powerful (next lecture)

• Suggested reading: Grune and Jacobs (2007, ch.8), Aho et al. (2007, Section
4.4)

Next:
• Deterministic bottom-up parsing
• Suggested reading: Grune and Jacobs (2007, ch.9), Aho et al. (2007, Section
4.5–4.7)
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Exercise
compute the FIRST and FOLLOW sets, and LL(1) table for S → iEtSQ | a Q → eS | ϵ E → b
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