
Formal Languages
Parsing

ISCL-BA-06

Çağrı Çöltekin
ccoltekin@sfs.uni-tuebingen.de

University of Tübingen
Seminar für Sprachwissenschaft

Winter Semester 2020/21

version: 86ec85d @2020-11-30

What is a language?

• English, German, Chinese

• Latin, Coptic, Sanskrit, Sumerian
• Proto-Germanic, Proto-Uralic,

Proto-Dravidian
• Sign languages
• Esperanto
• Traffic signs, computer icons,

emoticons

• Chemical formulas
• Arithmetic expressions
• Python, Java, C++
• XML, JSON, HTML, YAML
• HTTP, TCP, UDP,
• The set of strings
{ba,baa,baaa,baaaa, . . .}

According to Jurafsky and Martin (2009), the last set of strings form the ‘sheep language’.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 1 / 1

What is a language?

• English, German, Chinese
• Latin, Coptic, Sanskrit, Sumerian

• Proto-Germanic, Proto-Uralic,
Proto-Dravidian

• Sign languages
• Esperanto
• Traffic signs, computer icons,

emoticons

• Chemical formulas
• Arithmetic expressions
• Python, Java, C++
• XML, JSON, HTML, YAML
• HTTP, TCP, UDP,
• The set of strings
{ba,baa,baaa,baaaa, . . .}

According to Jurafsky and Martin (2009), the last set of strings form the ‘sheep language’.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 1 / 1

What is a language?

• English, German, Chinese
• Latin, Coptic, Sanskrit, Sumerian
• Proto-Germanic, Proto-Uralic,

Proto-Dravidian

• Sign languages
• Esperanto
• Traffic signs, computer icons,

emoticons

• Chemical formulas
• Arithmetic expressions
• Python, Java, C++
• XML, JSON, HTML, YAML
• HTTP, TCP, UDP,
• The set of strings
{ba,baa,baaa,baaaa, . . .}

According to Jurafsky and Martin (2009), the last set of strings form the ‘sheep language’.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 1 / 1

What is a language?

• English, German, Chinese
• Latin, Coptic, Sanskrit, Sumerian
• Proto-Germanic, Proto-Uralic,

Proto-Dravidian
• Sign languages

• Esperanto
• Traffic signs, computer icons,

emoticons

• Chemical formulas
• Arithmetic expressions
• Python, Java, C++
• XML, JSON, HTML, YAML
• HTTP, TCP, UDP,
• The set of strings
{ba,baa,baaa,baaaa, . . .}

According to Jurafsky and Martin (2009), the last set of strings form the ‘sheep language’.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 1 / 1

What is a language?

• English, German, Chinese
• Latin, Coptic, Sanskrit, Sumerian
• Proto-Germanic, Proto-Uralic,

Proto-Dravidian
• Sign languages
• Esperanto

• Traffic signs, computer icons,
emoticons

• Chemical formulas
• Arithmetic expressions
• Python, Java, C++
• XML, JSON, HTML, YAML
• HTTP, TCP, UDP,
• The set of strings
{ba,baa,baaa,baaaa, . . .}

According to Jurafsky and Martin (2009), the last set of strings form the ‘sheep language’.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 1 / 1

What is a language?

• English, German, Chinese
• Latin, Coptic, Sanskrit, Sumerian
• Proto-Germanic, Proto-Uralic,

Proto-Dravidian
• Sign languages
• Esperanto
• Traffic signs, computer icons,

emoticons

• Chemical formulas
• Arithmetic expressions
• Python, Java, C++
• XML, JSON, HTML, YAML
• HTTP, TCP, UDP,
• The set of strings
{ba,baa,baaa,baaaa, . . .}

According to Jurafsky and Martin (2009), the last set of strings form the ‘sheep language’.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 1 / 1

What is a language?

• English, German, Chinese
• Latin, Coptic, Sanskrit, Sumerian
• Proto-Germanic, Proto-Uralic,

Proto-Dravidian
• Sign languages
• Esperanto
• Traffic signs, computer icons,

emoticons

• Chemical formulas

• Arithmetic expressions
• Python, Java, C++
• XML, JSON, HTML, YAML
• HTTP, TCP, UDP,
• The set of strings
{ba,baa,baaa,baaaa, . . .}

According to Jurafsky and Martin (2009), the last set of strings form the ‘sheep language’.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 1 / 1

What is a language?

• English, German, Chinese
• Latin, Coptic, Sanskrit, Sumerian
• Proto-Germanic, Proto-Uralic,

Proto-Dravidian
• Sign languages
• Esperanto
• Traffic signs, computer icons,

emoticons

• Chemical formulas
• Arithmetic expressions

• Python, Java, C++
• XML, JSON, HTML, YAML
• HTTP, TCP, UDP,
• The set of strings
{ba,baa,baaa,baaaa, . . .}

According to Jurafsky and Martin (2009), the last set of strings form the ‘sheep language’.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 1 / 1

What is a language?

• English, German, Chinese
• Latin, Coptic, Sanskrit, Sumerian
• Proto-Germanic, Proto-Uralic,

Proto-Dravidian
• Sign languages
• Esperanto
• Traffic signs, computer icons,

emoticons

• Chemical formulas
• Arithmetic expressions
• Python, Java, C++

• XML, JSON, HTML, YAML
• HTTP, TCP, UDP,
• The set of strings
{ba,baa,baaa,baaaa, . . .}

According to Jurafsky and Martin (2009), the last set of strings form the ‘sheep language’.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 1 / 1

What is a language?

• English, German, Chinese
• Latin, Coptic, Sanskrit, Sumerian
• Proto-Germanic, Proto-Uralic,

Proto-Dravidian
• Sign languages
• Esperanto
• Traffic signs, computer icons,

emoticons

• Chemical formulas
• Arithmetic expressions
• Python, Java, C++
• XML, JSON, HTML, YAML

• HTTP, TCP, UDP,
• The set of strings
{ba,baa,baaa,baaaa, . . .}

According to Jurafsky and Martin (2009), the last set of strings form the ‘sheep language’.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 1 / 1

What is a language?

• English, German, Chinese
• Latin, Coptic, Sanskrit, Sumerian
• Proto-Germanic, Proto-Uralic,

Proto-Dravidian
• Sign languages
• Esperanto
• Traffic signs, computer icons,

emoticons

• Chemical formulas
• Arithmetic expressions
• Python, Java, C++
• XML, JSON, HTML, YAML
• HTTP, TCP, UDP,

• The set of strings
{ba,baa,baaa,baaaa, . . .}

According to Jurafsky and Martin (2009), the last set of strings form the ‘sheep language’.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 1 / 1

What is a language?

• English, German, Chinese
• Latin, Coptic, Sanskrit, Sumerian
• Proto-Germanic, Proto-Uralic,

Proto-Dravidian
• Sign languages
• Esperanto
• Traffic signs, computer icons,

emoticons

• Chemical formulas
• Arithmetic expressions
• Python, Java, C++
• XML, JSON, HTML, YAML
• HTTP, TCP, UDP,
• The set of strings
{ba,baa,baaa,baaaa, . . .}

According to Jurafsky and Martin (2009), the last set of strings form the ‘sheep language’.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 1 / 1

What is a language?

• English, German, Chinese
• Latin, Coptic, Sanskrit, Sumerian
• Proto-Germanic, Proto-Uralic,

Proto-Dravidian
• Sign languages
• Esperanto
• Traffic signs, computer icons,

emoticons

• Chemical formulas
• Arithmetic expressions
• Python, Java, C++
• XML, JSON, HTML, YAML
• HTTP, TCP, UDP,
• The set of strings
{ba,baa,baaa,baaaa, . . .}

According to Jurafsky and Martin (2009), the last set of strings form the ‘sheep language’.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 1 / 1

What is a language?

• English, German, Chinese
• Latin, Coptic, Sanskrit, Sumerian
• Proto-Germanic, Proto-Uralic,

Proto-Dravidian
• Sign languages
• Esperanto
• Traffic signs, computer icons,

emoticons

• Chemical formulas
• Arithmetic expressions
• Python, Java, C++
• XML, JSON, HTML, YAML
• HTTP, TCP, UDP,
• The set of strings
{ba,baa,baaa,baaaa, . . .}

According to Jurafsky and Martin (2009), the last set of strings form the ‘sheep language’.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 1 / 1

Natural, artificial, formal languages

• Some languages in our list are natural languages
• In contrast, some are designed, they are artificial
• Formal languages are those that we can study formally

– analyze them in principled ways
– (provably) answer some questions about these languages

• All languages in our list can be studied as formal languages (to some extent)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 2 / 1

Languages as sets of strings

We define a formal language as a set of finite-length string over an alphabet.
• The sheep language from the first slide was represented as a set:
{ba,baa,baaa,baaaa, . . .}

The alphabet of a language is the set of “symbols” in the language,
conventionally denoted as Σ.

• For the sheep language, Σ = {a,b}

• What is the alphabet for English syntax?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 3 / 1

Languages as sets of strings

We define a formal language as a set of finite-length string over an alphabet.
• The sheep language from the first slide was represented as a set:
{ba,baa,baaa,baaaa, . . .}

The alphabet of a language is the set of “symbols” in the language,
conventionally denoted as Σ.

• For the sheep language, Σ = {a,b}

• What is the alphabet for English syntax?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 3 / 1

Languages as sets of strings

We define a formal language as a set of finite-length string over an alphabet.
• The sheep language from the first slide was represented as a set:
{ba,baa,baaa,baaaa, . . .}

The alphabet of a language is the set of “symbols” in the language,
conventionally denoted as Σ.

• For the sheep language, Σ = {a,b}

• What is the alphabet for English syntax?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 3 / 1

Formal grammar

A formal grammar is a finite specification of a (formal) language.
• Since we consider languages as sets of strings, for a finite language, we can

(conceivably) list all strings
• How to define an infinite language?
• Is the definition {ba,baa,baaa,baaaa, . . .} ‘formal enough’?

• Using regular expressions, we can define it as baa∗

• But we will introduce a more general method for defining languages soon
• Are natural languages infinite?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 4 / 1

Formal grammar

A formal grammar is a finite specification of a (formal) language.
• Since we consider languages as sets of strings, for a finite language, we can

(conceivably) list all strings
• How to define an infinite language?
• Is the definition {ba,baa,baaa,baaaa, . . .} ‘formal enough’?
• Using regular expressions, we can define it as baa∗

• But we will introduce a more general method for defining languages soon

• Are natural languages infinite?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 4 / 1

Formal grammar

A formal grammar is a finite specification of a (formal) language.
• Since we consider languages as sets of strings, for a finite language, we can

(conceivably) list all strings
• How to define an infinite language?
• Is the definition {ba,baa,baaa,baaaa, . . .} ‘formal enough’?
• Using regular expressions, we can define it as baa∗

• But we will introduce a more general method for defining languages soon
• Are natural languages infinite?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 4 / 1

Formal languages
Some definitions

Alphabet is the set of ‘atomic’ symbols in the language
String is a sequence of symbols from the alphabet, For example, 101100 is a

string over alphabet Σ = {0, 1}

• Concatenation: if x = 10 and y = 11000101, their concatenation
xy = 1011000101

• We represent the empty string with ϵ (some books use λ)
• The notation x∗ indicates zero or more concatenation of string x

with itself, e.g., ϵ, 01, 010101 (the operation is called Kleene star)
• The notation x+ is a shorthand for xx∗
• xn means exactly n repetition of string x

Σ∗ is all possible strings that can be defined over alphabet Σ
Sentence of a language is a string that is in the language (confusingly the term

word is also common)
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 5 / 1

Operations on languages

Since we define languages as sets, all set operations are applicable to
languages. If L1 and L2 are languages,

• Intersection: L1 ∩ L2

• Union: L1 ∪ L2

• Difference: L1 − L2

• Complement: Σ∗ − L1

• Concatenation: L1L2 = {xy|x ∈ L1andy ∈ L2}

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 6 / 1

Three different views on formal languages

• In formal language theory, a language is studied for itself. Languages are
simply set of strings, we do not attach ‘meaning’ to them. The questions of
interests are abstract. For example, ‘how to find the intersection of two
languages for which we have grammars?’

• In computer science, we want to analyze the structure (of, e.g., a computer
program) to get some information, or ‘meaning’. The most common area is
compiler construction, but almost any syntactic analysis task is supported by
formal definitions of the respective languages.

• In (computational) linguistics, the aim is to analyze sentences (syntax), and
associate them with their meanings (semantics). Formal languages provide a
way to study a seemingly chaotic object, natural language, in a principled way.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 7 / 1

Grammars: how to describe a language?

• In daily use, a ‘grammar’ is a book, it defines a language in detail
• But we are interested in more formal grammars
• The challenge is describing a possibly infinite set with a finite specification
• We already see that it was possible (e.g., regular expressions)
• Another possible way would be writing a computer program that determines

if the given string is in the language
• However, we want more general descriptions: grammars that can describe

any ‘describable’ language in a concise and easy to study formalism

Aside: can any language be described by a finite description?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 8 / 1

Grammars: how to describe a language?

• In daily use, a ‘grammar’ is a book, it defines a language in detail
• But we are interested in more formal grammars
• The challenge is describing a possibly infinite set with a finite specification
• We already see that it was possible (e.g., regular expressions)
• Another possible way would be writing a computer program that determines

if the given string is in the language
• However, we want more general descriptions: grammars that can describe

any ‘describable’ language in a concise and easy to study formalism

Aside: can any language be described by a finite description?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 8 / 1

Phrase structure grammars

• A phrase structure grammar is a generative device
• If a given string can be generated by the grammar, the string is in the language
• The grammar generates all and the only strings that are valid in the language
• A phrase structure grammar has the following components

Σ A set of terminal symbols
N A set of non-terminal symbols

S ∈ N A special non-terminal, called the start symbol
R A set of rewrite rules or production rules of the form:

α → β

which means that the sequence α can be rewritten as β (both α and β are
sequences of terminal and non-terminal symbols)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 9 / 1

Phrase structure grammars
Some conventions

• We use uppercase letters (sometimes capitalized words) for non-terminal
symbols: A, B, C, NP, End

• We use lowercase letters (sometimes lowercase words) for terminals: a, b, c,
cat, dog

• We use Greek letters letters for sentential forms, (sequences of terminal and
non-terminal symbols): α, β, γ

• For sequences of terminal symbols (strings) we use lowercase letters from the
end of the alphabet: u, v, w, x, y, z

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 10 / 1

Generating sentences from a PSG

1. Start with the symbol S as the first sentential form
2. Pick a rule with matching the part of the current sentential form
3. Apply the rewrite (production) rule
4. Repeat 2 and 3, until there are no non-terminals left
• Exhaustively exploring all possible productions ‘enumerates’ all sentences of

the language described by the grammar

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 11 / 1

Phrase structure grammars
A very simple example – the sheep language

A grammar

1. S → B A
2. B → b
3. A → a A
4. A → a

Quick exercise: try to define a
different grammar for the same
language.

An example derivation

Sentential form rule notes
S start symbol
BA S → B A rule 1
bA B → b rule 2
baA A → a A rule 3
baaA A → a A rule 3
baaa A → a rule 4

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 12 / 1

Phrase structure grammars
A very simple example – the sheep language

A grammar

1. S → B A
2. B → b
3. A → a A
4. A → a

Quick exercise: try to define a
different grammar for the same
language.

An example derivation

Sentential form rule notes
S start symbol
BA S → B A rule 1
bA B → b rule 2
baA A → a A rule 3
baaA A → a A rule 3
baaa A → a rule 4

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 12 / 1

Generation to parsing

• The above procedure (generating all sentences from a generative grammar)
gives us a possible way to do parsing:

– Enumerate all sentences from the grammar
– If the string we are interested comes out, it is in the language: parsing is

successful
– If it does not come out, it is not in the language: parsing failed (we’ll get back to

this point soon)
• We will also see later that this is in fact the idea behind top-down parsers

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 13 / 1

Phrase structure grammars
Another example: the goat language (a dialect of sheep language)1

The grammar

1. S → Begin B A End
2. B → b
3. A → a
4. A → a A
5. a A End → a ’ a
6. Begin b a → Begin b b a
7. Begin b b → b b

A few exercises:
• Describe the language
• Derive the string bbaaa'a
• Is the string baa'a in the language?
• Can you write a simpler grammar

for this language?

1Some claim that the grammar is just the same, but goats use the word m instead of the word b.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 14 / 1

Phrase structure grammars
A few notes

• The phrase structure grammars are not the only method for defining
languages (sets)

• However, all known methods are either equivalent to, or less powerful than
phrase structure grammars

• The formalism we sketched is general: any set (language) that can be
generated by a computer program can be defined by a phrase structure
grammar

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 15 / 1

Languages and Grammars
more definitions

• The language that can be derived from a grammar G, is denoted by L(G)

• The notation u ⇒ v is used to denote ‘immediate derivation’, e.g., A ⇒ aA

• If a sentential form β can be derived from another sentential form α with zero
or more immediate derivations, we write α ∗⇒ β

• I β can be derived from α with exactly n immediate derivations, we write
α

n⇒ β

• Formally, L(G) = {w ∈ Σ∗ | S
∗⇒ w}

• Two grammars G and G′ are weakly equivalent if L(G) = L(G′)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 16 / 1

The Chomsky hierarchy of grammars

Type 0 Unrestricted phrase structure grammars
Type 1 Context-sensitive or monotonic grammars

Type 1.9 Mildly-context sensitive grammars
Type 2 Context-free grammars

Type 2.5 Linear grammars
Type 3 Regular grammars
Type 4 Finite (choice) grammars

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 17 / 1

Type 0: unrestricted PSG

• As the names says - unrestricted, any form of the rewrite rules are allowed
• If a language can be generated at all, it can be defined/generated by a

unrestricted PSG
• No general parsing algorithm exists, and in fact cannot exist
• In general, type 0 grammars are not interesting for practical applications
• The class of languages described by type 0 grammars is called recursively
enumerable languages

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 18 / 1

Type 1: monotonic

• We introduce one restriction to PSG: the right hand side (RHS) of a rule
cannot be shorter than the left hand side (LHS)

• The rule applications cannot ‘shrink’ the sentential forms
• For example, our ‘goat language grammar’ is not monotonic, because of the

rule Begin b b → b b
• This also means no ϵ-rules
• Sometimes the language with only the empty string is allowed as an exception

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 19 / 1

Type 1: context sensitive

• A context-sensitive grammar rewrites only one of its non-terminal on the LHS.
• Our ‘goat language grammar’ is not context-sensitive, because of the rule
• a A End → a ’ a
• Context-sensitive and monotonic grammars are equivalent
• Parsing is possible with Type 1 grammars, but inefficient
• In general, not much practical use

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 20 / 1

An example type 1 grammar: anbncn

S → abc
S → aSX
bXc → bbcc
cX → Xc

S

a S

a b c X

b X c

a a b b c c

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 21 / 1

An example type 1 grammar: anbncn

monotonic version

S → abc
S → aSX
bXc → bbcc
cX → Xc

S

a S

a b c X

b X c

a a b b c c

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 21 / 1

An example type 1 grammar: anbncn

context-sensitive version

S → abC
S → aSX
bXC → bbCC
CX → CY
CY → XY
XY → XC
C → c

Exercise: try to write a
(type 1) grammar for
anbmcndm.

S

a S X

a b C X

C Y

X Y

b X C

b b c c

a a b b c c

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 22 / 1

An example type 1 grammar: anbncn

context-sensitive version

S → abC
S → aSX
bXC → bbCC
CX → CY
CY → XY
XY → XC
C → c

Exercise: try to write a
(type 1) grammar for
anbmcndm.

S

a S X

a b C X

C Y

X Y

b X C

b b c c

a a b b c c

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 22 / 1

Type 2: context free

• A context free language requires its LHS to have only a single non-terminal
symbol. Rules are in the form

A → α

• This means the rewrite rules cannot be conditioned on context, they are
independent of their environment

• It also means, each non-terminal defines its own language
• Context-free languages have efficient parsers, and used in practical

applications
• All programming languages are (subclasses) of context free languages
• Most of natural language parsing is based on context-free parsing (more on

this soon)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 23 / 1

Type 2: context free
an example

Exp → n
Exp → Exp Op Exp
Exp → (Exp)
Op → +
Op → −
Op → ×
Op → /

Generating (n+ n)× n

Exp

Exp

(Exp

Exp

n

Op

+

Exp

n

)

Op

×

Exp

n

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 24 / 1

Type 2: context free
an example

Exp → n
Exp → Exp Op Exp
Exp → (Exp)
Op → +
Op → −
Op → ×
Op → /

Generating (n+ n)× n

Exp

Exp

(Exp

Exp

n

Op

+

Exp

n

)

Op

×

Exp

n

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 24 / 1

Recursion

• The notion of recursion is important grammars
• A CF rule is directly recursive, if RHS includes the non-terminal on the LHS

symbol
A → A α left recursive
A → α A right recursive

A → α A β self embedding
• Recursion can also be indirect:

A → B c B → d A
• Note that CF grammars are monotonic, unless they have ϵ rules

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 25 / 1

CF grammars: notational variants

Backus-Naur form (BNF)

Exp ::= n
Exp ::= ⟨Exp⟩ ⟨Op⟩ ⟨Exp⟩
Exp ::= (⟨Exp⟩)
Op ::= +
Op ::= −
Op ::= ×
Op ::= /

• Common in compiler generators
and similar tools

• Also common standard definitions
(e.g., HTML, XML)

• Non-terminals are put in angle
brackets

• Instead of →, we have ::=
• There are extended forms (EBNF, or

extended CFG), e.g., allowing
regexp

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 26 / 1

Type 3: regular

• Regular grammars come in two flavors: right-regular and left-regular
• A right-regular grammar allows only two types of rules:

A → a and A → a B
• A left-regular grammar allows:

A → a and A → B a
• Generally, ϵ-rules are also allowed A → ϵ

• Right-regular grammars are more common in practical use
• Almost all operations on regular languages are efficient, lots of practical use
• Regular grammars are equivalent to regular expressions

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 27 / 1

Type 3: regular
an example (right regular)

Sheep language

S → b A
A → a
A → a A

Generating ‘baaa’

S

b A

a A

a A

a

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 28 / 1

Type 3: regular
an example (right regular)

Sheep language

S → b A
A → a
A → a A

Generating ‘baaa’

S

b A

a A

a A

a

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 28 / 1

Type 3: regular
an example (left regular)

Sheep language

S → B a
B → b
B → B a

Generating ‘baaa’

S

B

B

B

b

a

a

a

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 29 / 1

Type 3: regular
an example (left regular)

Sheep language

S → B a
B → b
B → B a

Generating ‘baaa’

S

B

B

B

b

a

a

a

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 29 / 1

Regular grammars, regular expressions, and finite-state automata

Sheep language

S → b A
A → a
A → a A

0 1 2b a

a

baa∗

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 30 / 1

Chomsky hierarchy
a summary and relation to automata

Grammar Language Automata
Type 0 (unrestricted) Recursively enumerable Turing machines
Type 1 (context-sensitive) Context sensitive Linear bounded automata
Type 2 (context-free) Context fee Pushdown automata
Type 3 (regular) Regular Finite-state automata

• Other theoretically (or practically) interesting classes exist
• Our focus in this course will be mainly context-free grammars
• A question: what does it mean for a grammar to be more expressive?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 31 / 1

Actually enumerating all sentences from a grammar

• As we sketched it earlier:
1. Start with sentential form ‘S’
2. Pick a LHS that matches part of the sentential form
3. Rewrite the part of the sentential form
4. Repeat 2 & 3 until either

• no non-terminals left in the sentential form: result is a sentence
• there are no possible productions: dead end

• So far, we picked the rules manually, two strategies to do this automatically:
– Explore all possible productions simultaneously
– Use recursion or (iteration with an ‘agenda’), and backtrack when we hit a dead

end (or generated a sentence successfully)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 32 / 1

Example generation

S BA

BaA 7

Ba 7

bA
ba 3

baA
baa 3

baaA …

Note that we need to explore all options type 0 and type 1
grammars.

Another grammar for the
sheep language

S → B A
A → a
A → a A
BA → b A

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 33 / 1

Example generation

S BA

BaA 7

Ba 7

bA
ba 3

baA
baa 3

baaA …

Note that we need to explore all options type 0 and type 1
grammars.

Another grammar for the
sheep language

S → B A
A → a
A → a A
BA → b A

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 33 / 1

Example generation

S BA

BaA 7

Ba 7

bA
ba 3

baA
baa 3

baaA …

Note that we need to explore all options type 0 and type 1
grammars.

Another grammar for the
sheep language

S → B A
A → a
A → a A
BA → b A

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 33 / 1

Example generation

S BA

BaA 7

Ba 7

bA
ba 3

baA
baa 3

baaA …

Note that we need to explore all options type 0 and type 1
grammars.

Another grammar for the
sheep language

S → B A
A → a
A → a A
BA → b A

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 33 / 1

Generation and parsing
why unrestricted grammars are undecidable

• The generation procedure we outline can generate all sentence from any PSG
• We can define parsing as waiting until the string we want to parse comes out
• For monotonic/context-sensitive grammars, we can ensure to enumerate

shortest strings first
• For unrestricted grammars, the sentential forms may shrink, as a result

– if the string comes out, parsing is successful
– if not, we do not know if it is not in the language, or we haven’t obtained it yet

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 34 / 1

How do we know a language is regular?

• Easy ways of proving that a language is regular: find one of
– type 3 grammar
– regular expression
– finite-state automata

that generates and recognizes the language

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 35 / 1

How do we know a language is regular?
the goat language

regex examples
bb(a | a ∗ ′ a)
bba(a ∗ ′ a)?

regular grammar
S → bB B → a A → aA C → ’E
B → bB B → aA A → aC E → a

finite-state automaton

S B1 B2 A C Eb b a

a

a

’ a

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 36 / 1

How do we know a language is not regular?
pumping lemma for regular languages

a b c d e
k

l

m

• What is the length of longest string generated by this FSA?

• Any FSA generating an infinite language has to have a loop (application of
recursive rule(s) in the grammar)

• Part of every string longer than some number will include repetition of the
same substring (‘cklm’ above)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 37 / 1

How do we know a language is not regular?
pumping lemma for regular languages

a b c d e
k

l

m

• What is the length of longest string generated by this FSA?

• Any FSA generating an infinite language has to have a loop (application of
recursive rule(s) in the grammar)

• Part of every string longer than some number will include repetition of the
same substring (‘cklm’ above)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 37 / 1

How do we know a language is not regular?
pumping lemma for regular languages

a b c d e
k

l

m

• What is the length of longest string generated by this FSA?
• Any FSA generating an infinite language has to have a loop (application of

recursive rule(s) in the grammar)
• Part of every string longer than some number will include repetition of the

same substring (‘cklm’ above)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 37 / 1

Pumping lemma
definition

For every regular language L, there exist an integer p such that a string x ∈ L can
be factored as x = uvw,

• uviw ∈ L, ∀i ⩾ 0

• v ̸= ϵ

• |uv| ⩽ p

a b c d e
k

l

m

u

v

w

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 38 / 1

Pumping lemma
definition

For every regular language L, there exist an integer p such that a string x ∈ L can
be factored as x = uvw,

• uviw ∈ L, ∀i ⩾ 0

• v ̸= ϵ

• |uv| ⩽ p

a b c d e
k

l

m

u

v

w

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 38 / 1

How to use pumping lemma

• We use pumping lemma to prove that a language is not regular
• Proof is by contradiction:

– Assume the language is regular
– Find a string x in the language, for all splits of x = uvw, at least one of the

pumping lemma conditions does not hold
• uviw ∈ L (∀i ⩾ 0)
• v ̸= ϵ

• |uv| ⩽ p

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 39 / 1

Pumping lemma example
prove L = anbn is not regular

• Assume L is regular: there must be a p such that, if uvw is in the language
1. uviw ∈ L (∀i ⩾ 0)
2. v ̸= ϵ

3. |uv| ⩽ p

• Pick the string apbp

• For the sake of example, assume p = 5, x = aaaaabbbbb

• Three different ways to split

a︸︷︷︸
u

aaa︸︷︷︸
v

abbbbb︸ ︷︷ ︸
w

violates 1

aaaa︸ ︷︷ ︸
u

ab︸︷︷︸
v

bbbb︸ ︷︷ ︸
w

violates 1 & 3

aaaaab︸ ︷︷ ︸
u

bbb︸︷︷︸
v

b︸︷︷︸
w

violates 1 & 3

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 40 / 1

How do we know a language is context-free?

• Again, find a context-free grammar that generates the language
• Examples: anbn

S → aSb
S → ϵ

This is for n ⩾ 0, to disallow allow a0b0, replace the second rule with S → ab

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 41 / 1

How do we know a language is context-free?

• Again, find a context-free grammar that generates the language
• Examples: anbn

S → aSb
S → ϵ

This is for n ⩾ 0, to disallow allow a0b0, replace the second rule with S → ab

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 41 / 1

How do we know a language is not context-free?
pumping lemma for context-free languages

• The idea is similar to regular languages, but we can have ‘embedded’
structures as well as simple loops

• For any sufficiently long sentence uvxyz in a context-free language
1. uvixyiz ∈ L (∀i ⩾ 0)
2. |vy| ⩾ 0

3. |vxy| ⩽ p

• Again, the proof is by contradiction
– Assume the language is context-free
– Find a string s = uvxyz and a number p in the language that does not satisfy the

conditions above

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 42 / 1

Where do natural language syntax fit?
Cross-serial dependencies

Jan säit das mer em Hans es huss hälfed aastriiche
Jan said that we Hans (DAT) the house (ACC) helped paint

• The above structure is not possible to parse using context-free languages
• Otherwise, experience so far indicates that a CF-based grammar can describe

natural language syntax

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 43 / 1

Chomsky hierarchy: the picture

Regular

Context Free

Context Sensitive

Recursively Enumerable

• Chomsky hierarchy of languages form a hierarchy (with some care about empty
language)

• It is often claimed that mildly context sensitive grammars (dashed ellipse) are
adequate for representing natural languages

• Note, however, not even every regular language is a potential natural language (e.g.,
a∗bbc∗). The possible natural languages probably cross-cut this hierarchy (shaded
region)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 44 / 1

Summary

• Phrase structure grammars are generative grammars that are finite
specifications of (infinite) languages

• They form the basis of the theory of parsing
• More expressive grammar classes (type 0 and type 1) are not computationally

attractive
• We will focus on more practical grammar classes, mainly context-free

grammars, for the rest of the course

• Next: introduction to parsing
• Suggested reading: grune2008

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 45 / 1

Summary

• Phrase structure grammars are generative grammars that are finite
specifications of (infinite) languages

• They form the basis of the theory of parsing
• More expressive grammar classes (type 0 and type 1) are not computationally

attractive
• We will focus on more practical grammar classes, mainly context-free

grammars, for the rest of the course
• Next: introduction to parsing
• Suggested reading: grune2008

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 45 / 1

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 A.1

Example: deriving bbaaa’a

Sentential form rule
S (init)
Begin B A End S → Begin B A End
Begin b A End B → b
Begin b a A End A → a A
Begin b a a A End A → a A
Begin b a a A End A → a A
Begin b a a a A End A → a A
Begin b a a a a End A → a
b b a a a a End Begin b a → b b a
b b a a a ' a a a End → a ’ a

The grammar

1. S → Begin B A End
2. B → b
3. A → a
4. A → a A
5. a A End → a ’ a
6. Begin b a → b b a
7. Begin b b → b b

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 A.2

Example: deriving baa’a

Sentential form rule
S (init)
Begin B A End S → Begin B A End
Begin b A End B → b
Begin b a A End A → a A
Begin b a a A End A → a A
Begin b a a A End A → a A
Begin b a a ' a (none)

We are stuck with a sentential form with
non-terminals.

The grammar

1. S → Begin B A End
2. B → b
3. A → a
4. A → a A
5. a A End → a ’ a
6. Begin b a → b b a
7. Begin b b → b b

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 A.3

anbmcndm

1. S → X Y
2. X → aXC
3. X → aC
4. Y → BYd
5. Y → Bd
6. CB → BC
7. aB → ab
8. bB → bb
9. Cd → cd

10. Cc → cc

Some explanation:
• Rule (1) generates a string with two parts X and Y
• For X, we generate as many C’s as a’s (3), and for Y,

we generate as many B’s as d’s (4)
• We will eventually rewrite Cs as c, and ’B’s as ’b’, but

their order is not correct.
• When recursions for X and Y terminate, we have

equal number of a’s and C, and equal number of B’s
d’s, and a’s are all at the beginning, and d’s are all at
the end

• Rule (2) swaps B and C’s
• We allow rewriting B as b only after and a or b, and

allow rewriting C as C only before d

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 A.4

anbmcndm

1. S → X Y
2. X → aXC
3. X → aC
4. Y → BYd
5. Y → Bd
6. CB → BC
7. aB → ab
8. bB → bb
9. Cd → cd

10. Cc → cc

Some explanation:
• Rule (1) generates a string with two parts X and Y
• For X, we generate as many C’s as a’s (3), and for Y,

we generate as many B’s as d’s (4)
• We will eventually rewrite Cs as c, and ’B’s as ’b’, but

their order is not correct.
• When recursions for X and Y terminate, we have

equal number of a’s and C, and equal number of B’s
d’s, and a’s are all at the beginning, and d’s are all at
the end

• Rule (2) swaps B and C’s
• We allow rewriting B as b only after and a or b, and

allow rewriting C as C only before d

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 A.4

Acknowledgments, references, additional reading material

• Please read grune2008 chapter 2, a large part of the lecture follows this chapter

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 A.5

