Bottom-up Chart Parsing: the CKY algorithm
Parsing
ISCL-BA-06

Çağn Çoltekin

ccoltekinasfe.uni-tuebingen.de
Univesaty of nubengni
semine fir
Winter Semester 2020/21

Parsing so far

Parsing is the task of automatic syntactic analysis
For most practical purposes, context-free grammars are the most useful formalism for parsing
We can formulate parsing as

- Top-down: begin with the start symbol, try to produce the input string to be
- Bottom up: begin with the input, and try to reduce it to the start symbol
- Both strategies can be cast as search with backtracking

Backtracking parsers are inefficient: they recompute sub-trees multiple times

$\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP}$
$\mathrm{NP} \rightarrow \mathrm{Det}$
$\mathrm{NP} \rightarrow \mathrm{NP}$
$\mathrm{VP} \rightarrow \mathrm{V}$
Det +a
Det + the
$\mathrm{N} \rightarrow$ cat
$\mathrm{N} \rightarrow$ dog
$\mathrm{V} \rightarrow$ bites
$\mathrm{N} \rightarrow$ bites

Dealing with ambiguity
$\mathrm{S} \rightarrow \mathrm{NP}$ VP
$\mathrm{NP} \rightarrow \operatorname{PrnN}$
$\mathrm{NP} \rightarrow \operatorname{Prn}$
$\mathrm{VP} \rightarrow \mathrm{VNP}$
$\mathrm{VP} \rightarrow \mathrm{V}$
$\mathrm{VP} \rightarrow \mathrm{VS}$
$\mathrm{N} \rightarrow$ duck
$\mathrm{V} \rightarrow$ duck
$\mathrm{V} \rightarrow$ saw
$\operatorname{Prn} \rightarrow 1$
$\operatorname{Prn} \rightarrow$ she
$\operatorname{Prn} \rightarrow$ her
daw her duck

Dealing with ambiguity

Dealing with ambiguity

$\mathrm{S} \rightarrow \mathrm{NP}$ VP
$\mathrm{NP} \rightarrow \operatorname{PrnN}$
$\mathrm{NP} \rightarrow \operatorname{Prn}$
$\mathrm{VP} \rightarrow \mathrm{V} \mathrm{NP}$
$\mathrm{VP} \rightarrow \mathrm{V}$
$\mathrm{VP} \rightarrow \mathrm{VS}$
$\mathrm{N} \rightarrow$ duck
$\mathrm{V} \rightarrow$ duck
$\mathrm{V} \quad \rightarrow$ saw
$\mathrm{Prn} \rightarrow \mathrm{I}$
$\operatorname{Prn} \rightarrow$ she
$\mathrm{Prn} \rightarrow$ her

Dealing with ambiguity

 10

$\mathrm{S} \rightarrow \mathrm{NP}$ VP
$\mathrm{NP} \rightarrow \operatorname{PrnN}$
$\mathrm{NP} \rightarrow \operatorname{Prn}$
$\mathrm{VP} \rightarrow \mathrm{VNP}$
$\mathrm{VP} \rightarrow \mathrm{V}$
$\mathrm{VP} \rightarrow \mathrm{VS}$
$\mathrm{N} \rightarrow$ duck
$\mathrm{V} \rightarrow$ duck
$\mathrm{V} \rightarrow$ saw
$\operatorname{Prn} \rightarrow \mathrm{I}$
$\operatorname{Prn} \rightarrow$ she
$\operatorname{Prn} \rightarrow$ her

12
Dealing with ambiguity

CKY algorithm

- The CKY (Cocke-Kasami-Younger) parsing algorithm is a dynamic programming algorithm (Kasami 1965; Younger 1967; Cocke and Schwartz 1970)
- It processes the input bottom $u p$, and saves the intermediate results on a chart

Time complexity for recognition is $\mathrm{O}\left(n^{3}\right)$

- Space complexity is $\mathrm{O}\left(\mathrm{n}^{2}\right)$

It requires the CFG to be in Chomsky normal form (CNF) (can somewhat be relaxed, but not common)

Dealing with ambiguity

11
Chomsky normal form (CNF)

- A CFG is in CNF, if the rewrite rules are in one of the following forms $-\mathrm{A} \rightarrow \mathrm{BC}$
$-\mathrm{A} \rightarrow \mathrm{a}$
where $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are non-terminals and a is a terminal
- Any CFG can be converted to CNF
- Resulting grammar is weakly equizalent to the original grammar-
- it generates/accepts the same language
- but the derivations are different

Converting to CNF: example

How to represent multiple parses
parse borest grammar

$\mathrm{S}_{\mathrm{O}, 4} \rightarrow \mathrm{NP}_{0.1} \mathrm{VP}_{1.4}$ $\mathrm{NP}_{0.1} \rightarrow \mathrm{Prn}_{0,1}$
$\mathrm{Prno1}^{\mathrm{VP}_{1,4} \rightarrow \mathrm{~V}_{0,1}}$
$\mathrm{VP}_{1: 4} \rightarrow \mathrm{~V}_{1: 2} \mathrm{~S}_{2: 4}$
$\mathrm{~V}_{1: 2} \rightarrow \mathrm{saw}_{1: 2}$
$\mathrm{S}_{2: 4} \rightarrow \operatorname{Prn}_{2.3} \mathrm{~V}_{3.4}$
$\frac{\mathrm{V}_{3,4} \rightarrow \text { duck }_{3 / 4}}{\mathrm{VP}_{1,4} \rightarrow \mathrm{~V}_{1: 2} \mathrm{NP}_{2}}$
$\mathrm{NP}_{2: 4} \rightarrow \operatorname{Prn}_{2,3} \mathrm{~N}_{3,4}$

Converting to CNF

1. Eliminate the ε rules: if $\mathrm{A} \rightarrow \varepsilon$ is in the grammar

- replace any rule $B \rightarrow \alpha A \beta$ with two rules

$$
\begin{aligned}
& \mathrm{B} \rightarrow \alpha \beta \\
& \mathrm{~B} \rightarrow \mathrm{~A}^{\prime} \beta
\end{aligned}
$$

add $\mathrm{A}^{\prime} \rightarrow \alpha$ for all α (except e) whose LHS is A
repeat the process for newly created ϵ rules

- remove the rules with e on the RHS (except $S \rightarrow e$)

2 Eliminate unit rules: for a rule $\mathrm{A} \rightarrow \mathrm{B}$

- Replace the rule with $\mathrm{A} \rightarrow \alpha_{1}|\ldots| \alpha_{n}$, where $\alpha_{1}, \ldots, \alpha_{n}$ are all RHS or rule B Remove the rule A $\rightarrow \mathrm{B}$
- Repeat the process until no unit rules remain

3. Binarize all the non-binary rules with non-terminal on the RHS: for a rule
$\mathrm{A} \rightarrow \mathrm{X}_{1} \mathrm{X}_{2} \ldots \mathrm{X}_{\mathrm{n}}$:

- Replace the rule with $A \rightarrow A_{1} X_{2} \ldots X_{n}$, and add $A_{1} \rightarrow X_{1} X_{2}$
- Repeat the process until all new rules are binary

CKY demonstration

an ambiguous example

CKY demonstration
an ambigucus example

CKY demonstration
an ambiguous example

I saw her duck

CKY demonstration
an ambeguous example

CKY demonstration
an ambiguous example

CKY demonstration

ar ambiguous example

CKY demonstration

I saw her duck
duck
merismueramin

CKY demonstration
an ambeguous example

$\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP}$
$\mathrm{NP} \rightarrow \mathrm{PrnN}$
$\mathrm{VP} \rightarrow \mathrm{VNP}$
$\mathrm{VP} \rightarrow \mathrm{VS}$
$\mathrm{N} \rightarrow$ duck
$\mathrm{VP} \rightarrow$ duck \mid saw
$\mathrm{V} \rightarrow$ duck | saw
$\mathrm{Prn} \rightarrow \mathrm{I} \mid$ she \mid her
$\mathrm{NP} \rightarrow \mathrm{I} \mid$ she \mid her

CKY demonstration
an amboguous example

$\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP}$

$\mathrm{S} \rightarrow \mathrm{NPVP}$
$\mathrm{NP} \rightarrow \mathrm{PrnN}$
VP
$\mathrm{NP} \rightarrow \mathrm{PrnN}$
$\mathrm{VP} \rightarrow \mathrm{VNP}$
$\mathrm{VP} \rightarrow \mathrm{VS}$
$\mathrm{N} \rightarrow$ duck
$\mathrm{VP} \rightarrow$ duck $/$ saw
$\mathrm{VP} \rightarrow$ duck \mid saw
$\mathrm{V} \rightarrow$ duck $~$ saw
$\operatorname{Prn} \rightarrow 1 \mid$ she | her
$\mathrm{NP} \rightarrow 1$ | she | her

CKY demonstration
an ambuguous example

I saw her duck

CKY demonstration

$\mathrm{S} \rightarrow \mathrm{NP}$ VP
$\mathrm{NP} \rightarrow \mathrm{PrnN}$
$\mathrm{VP} \rightarrow \mathrm{VNP}$
$\mathrm{VP} \rightarrow \mathrm{VS}$
$\mathrm{N} \rightarrow$ duck
$\mathrm{VP} \rightarrow$ duck \mid saw
$\mathrm{V} \rightarrow$ duck | saw
$\mathrm{Prm} \rightarrow \mathrm{I} \mid$ she \mid her
$\mathrm{NP} \rightarrow \mathrm{I} \mid$ she \mid her
$\mathrm{NP} \rightarrow$ I she | her

CKY demonstration

CKY demonstration

an ambiguous example

CKY demonstration
an ambiguous example

$\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP}$
$\mathrm{NP} \rightarrow \mathrm{PrnN}$
$\mathrm{VP} \rightarrow \mathrm{VNP}$
$\mathrm{VP} \rightarrow \mathrm{VS}$
$\mathrm{N} \rightarrow$ duck
$\mathrm{VP} \rightarrow$ duck \mid saw
$\mathrm{V} \rightarrow$ duck \mid saw
$\mathrm{Prn} \rightarrow \mathrm{I} \mid$ she \mid her
$\mathrm{NP} \rightarrow \mathrm{I} \mid$ she \mid her

CKY demonstration
an ambiguous example

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{NP} \text { VP } \\
& \mathrm{NP} \rightarrow \mathrm{PrnN} \\
& \mathrm{VP} \rightarrow \mathrm{VNP} \\
& \mathrm{VP} \rightarrow \mathrm{VS} \\
& \mathrm{~N} \rightarrow \text { duck } \\
& \mathrm{VP} \rightarrow \text { duck } \text { saw } \\
& \mathrm{V} \rightarrow \text { duck | saw } \\
& \mathrm{Prn} \rightarrow 1 \mid \text { she } \mid \text { her } \\
& \mathrm{NP} \rightarrow 1 \mid \text { she } \mid \text { her }
\end{aligned}
$$

CKY demonstration: the chart

our chart is a 2 D array - this is more conventient for programming

Chart parsing example (CKY parsing)

The chart stores a parse forest efficiently.

Summary

+ CKY avoids re-computing the analyses by storing the earlier analyses (of sub-spans) in a table
It still computes lower level constituents that are not allowed by the grammar
- CKY requires the grammar to be in CNF
- CKY has $\mathrm{O}\left(\mathrm{n}^{3}\right)$ recognition complexity
- For parsing we need to keep track of backlinks
- CKY can efficiently store all possible parses in a chart
- Enumerating all possible parses have exponential complexity (worst case) Next:
- Top-down chart parsing: Earley algorithm

Suggested reading: Grune and Jacobs (2007, section 7.2)

Acknowledgments, references, additional reading material
[

We went through a recognition example
Note that the algorithm is not directional: it takes the complete input
Recognition accepts or rejects a sentence based on a grammar
For parsing, we want to know the derivations that yielded a correct parse
To recover parse trees, we

- we follow the same procedure as recognition
- add back links to keep track of the derivations

CKY demonstration: the chart
our chart is a 2 D array

Wrarsmane mayz1 $\quad \mathrm{n} / \mathrm{H}$

Parsing vs. recognition

