Chart Parsing

Parsing
ISCL-BA-06

Çaǵn Çoltekin

ccoltekinasfs.uni-tuebingen.de

Winter Semester 2020/21

Parsing so far

- We can formulate parsing as
- Top-down: begin with the start symbol, try to produce the input string to be
parsed
- Bottom up: begin with the input, and try to raduce it to the start symbol
- For both options, we have seen examples of chart parser

Parsing can also be directional or non-directional

- In this lecture, we introduce a general mechanism for chart parsing that has all these forms of parsing methods as special cases

The overall idea
We adopt Early-like chart entries of the form: $X \rightarrow \alpha \bullet \beta[i, j]$ where, - i and j are indexes starting from 0 (0 indicating beginning of the input string) - The chart entry indicates α is found between i and j, we are looking for a β starting from j
At any time, we have two sets of items.
active items are those we expect to complete
inactive items are those with a dot at the end

- The goal is to complete $S \rightarrow$.. $[0, \mathrm{n}]$

The sketch of a chart parsing algorithm

1.	Initialize A (agenda) and C (chart)
2:	repeat
$3:$	$i \leftarrow$ next (A)
$4:$	if $i \in C$ then
$5:$	discard i
6:	else
$7:$	apply all inference rules to i
8:	place new items in A
9:	place the item in C
10:	until A is empty

- Very simple, but unspecified parts: - Initialization

Inference rules
The order of items received from the agenda

- An item is put into chart only after all inferences from it are in the chart or in the agenda
- Chart is a set, items do not repeat

Components of a typical chart parsing algorithm

- Besides the chart, we keep an agenda of 'unexplored items'
- A set of inference rules determine how to modify the chart when processing items from the agenda
- Typically inference rules are similar to completion process of Earley parser
- The following inference rule is part of every chart parser (so-called
'fundamental rule' of chart parsing)
- If there is an inactive item of the form $\mathrm{A} \rightarrow \alpha$. and an active item of the form
$\mathrm{B} \rightarrow \beta \bullet A \gamma$ add item $\mathrm{B} \rightarrow \beta \mathrm{A} \bullet \gamma$
- We also need a strategy for selecting the items from the agenda and applying the inference rules
- Depending on the data structure used for the agenda, and order of processing of inference rules, we may get different types of parsers

Csarpeane

Bottom-up chart parsing

- Single additional inference rule:
- If a new item has the form $A \rightarrow \alpha *$, add $B \rightarrow \alpha \cdot \beta$ for each rule $B \rightarrow A \beta$ in the grammar.
- Initialization:
- Empty chart
- Place $\mathrm{P} \rightarrow \mathrm{w}_{\mathrm{i}}[1-1,1]$ in the agenda for all word w_{i}
('P' is the pre-terminal symbol, typically the POS tag in CL)
- if there are e rules, add $\mathrm{P} \rightarrow \bullet[1,1]$ for all $\mathrm{P} \rightarrow e$ in the grammar, for i in $[0, \mathrm{n}]$
- Choice of agenda does not matter. A stack is typical, but a queue or a priority queue is also an option

\square

\square
\square
\square
\square
\square
\square

